Have a personal or library account? Click to login
Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation Cover

Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation

Open Access
|Sep 2023

References

  1. Abdeljawad, T. (2011). On Riemann and Caputo fractional differences, Computers and Mathematics with Applications 62(3): 1602–1611.
  2. Almeida, R., Malinowska, A.B., Morgado, M.L. and Odzijewicz, T. (2017). Variational methods for the solutions of fractional discrete/continuous Sturm–Liouville problems, Journal of Mechanics of Materials and Structures 12(1): 3–21.
  3. Atici, F. and Eloe, P.W. (2009). Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society 137(3): 981–989.
  4. Bayrak, M.A., Demir, A. and Ozbilge, E. (2020). Numerical solution of fractional diffusion equation by Chebyshev collocation method and residual power series method, Alexandria Engineering Journal 59(6): 4709–4717.
  5. Ciesielski, M., Klimek, M. and Blaszczyk, T. (2017). The fractional Sturm–Liouville problem-numerical approximation and application in fractional diffusion, Journal of Computational and Applied Mathematics 317(6): 573–588.
  6. Cresson, J., Jiménez, F. and Ober-Blobaum, S. (2021). Modelling of the convection-diffusion equation through fractional restricted calculus of variations, IFACPapersOn-line 54(9): 482–487.
  7. D’Ovidio, M. (2012). From Sturm–Liouville problems to fractional anomalous diffusion, Stochastic Processes and Their Applications 122(10): 3513–3544.
  8. Goodrich, C. and Peterson, A.C. (2015). Discrete Fractional Calculus, Springer, Cham.
  9. Hanert, E. and Piret, C. (2012). Numerical solution of the space-time fractional diffusion equation: Alternatives to finite differences, Proceedings of the 5th Symposium on Fractional Differentiation and Its Applications, Hohai, China.
  10. Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer, Berlin/Heidelberg.
  11. Kaczorek, T. (2018). Stability of interval positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 28(3): 451–456, DOI: 10.2478/amcs-2018-0034.
  12. Kaczorek, T. (2019). Positivity of fractional descriptor linear discrete-time systems, International Journal of Applied Mathematics and Computer Science 29(2): 305–310, DOI: 10.2478/amcs-2019-0022.
  13. Klimek, M., Malinowska, A. B. and Odzijewicz, T. (2016). Applications of the Sturm–Liouville problem to the space-time fractional diffusion in a finite domain, Fractional Calculus and Applied Analysis 19(2): 516–550.
  14. Lin, Y. and Xu, C. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of Computational Physics 225(2): 1533–1552.
  15. Meerschaert, M.M. (2011). Fractional calculus, anomalous diffusion, and probability, in J. Klafter et al. (Eds), Fractional Dynamics: Recent Advances, World Scientific Publishing, Hackensack, pp. 265–284.
  16. Meerschaert, M.M. and Tadjeran, C. (2004). Finite difference approximations for fractional advection-diffusion flow equations, Journal of Computational and Applied Mathematics 172(1): 65–77.
  17. Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1–77.
  18. Miller, K.S. and Ross, B. (1989). Fractional difference calculus, in H.M Srivastava and S. Owa (Eds), Univalent Functions, Fractional Calculus, and Their Application, Ellis Horwood, Chichester, pp. 139–152.
  19. Mozyrska, D. and Girejko, E. (2013). Overview of fractional h-difference operators, in A. Almeida et al. (Eds), Operator Theory: Advances and Applications, Springer, Basel, pp. 253–268.
  20. Mozyrska, D., Girejko, E. and Wyrwas, M. (2013). Comparison of h-difference fractional operators, in W. Mitkowski et al. (Eds), Advances in the Theory of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 257, Springer, Heidelberg, pp. 192–198.
  21. Mozyrska, D. and Wyrwas, M. (2015). The Z-transform method and Delta type fractional difference operators, Discrete Dynamics in Nature and Society 2015, Article ID: 852734, DOI: 10.1155/2015/852734.
  22. Ostalczyk, P. (2008). Outline of Fractional-Order Differential-Integral Calculus: Theory and Applications in Automatic Control, Łódź University of Technology Press, Łódź, (in Polish).
  23. Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.
  24. Ostalczyk, P. (2015). Discrete Fractional Calculus: Applications in Control and Image Processing, World Scientific Publishing, Singapore.
  25. Płociniczak, L. (2019). Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting, Communications in Nonlinear Science and Numerical Simulation 76(9): 66–70.
  26. Płociniczak, L. and Świtała (2022). Numerical scheme for Erdélyi–Kober fractional diffusion equation using Galerkin–Hermite method, Fractional Calculus and Applied Analysis 25(4): 1651–1687.
  27. Płociniczak, L. and Świtała, M. (2018). Existence and uniqueness results for a time-fractional nonlinear diffusion equation, Journal of Mathematical Analysis and Applications 462(2): 1425–1434.
  28. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  29. Saber Elaydi, S. (2005). An Introduction to Difference Equations, Springer, New York.
  30. Woringer, M., Izeddin, I., Favard, C. and Berry, H. (2020). Anomalous subdiffusion in living cells: Bridging the gap between experiments and realistic models through collaborative challenges, Frontiers in Physics 8(134): 1–9.
  31. Wu, G.C., Baleanu, D., Zeng, S.D. and Deng, Z.G. (2015). Discrete fractional diffusion equation, Nonlinear Dynamics 80(1–2): 281–286.
DOI: https://doi.org/10.34768/amcs-2023-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 349 - 359
Submitted on: Oct 12, 2022
Accepted on: Apr 12, 2023
Published on: Sep 21, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Agnieszka B. Malinowska, Tatiana Odzijewicz, Anna Poskrobko, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.