Have a personal or library account? Click to login
A Realistic Tolerant Solution of a System of Interval Linear Equations with the Use of Multidimensional Interval Arithmetic Cover

A Realistic Tolerant Solution of a System of Interval Linear Equations with the Use of Multidimensional Interval Arithmetic

Open Access
|Jun 2023

References

  1. Alamanda, S. and Boddeti, K. (2021). Relative distance measure arithmetic-based available transfer capability calculation with uncertainty in wind power generation, International Transactions on Electrical Energy Systems 31(11): e13112.
  2. Barth, W. and Nuding, E. (1974). Optimale lösung von intervallgleichungssystemen, Computing 12(2): 117–125.
  3. Boukezzoula, R., Foulloy, L., Coquin, D. and Galichet, S. (2019). Gradual interval arithmetic and fuzzy interval arithmetic, Granular Computing 6(2): 451–471.
  4. Boukezzoula, R., Galichet, S., Foulloy, L. and Elmasry, M. (2014). Extended gradual interval (EGI) arithmetic and its application to gradual weighted averages, Fuzzy Sets and Systems 257: 67–84.
  5. Dubois, D. and Prade, H. (2008). Gradual elements in a fuzzy set, Soft Computing 12: 165–175.
  6. Dymova, L. (2011). Soft Computing in Economics and Finance, Springer Verlag, Berlin/Heidelberg.
  7. Gay, D. (1982). Solving linear interval equations, SIAM Journal on Numerical Analysis 19(4): 858–870.
  8. Kaczorek, T. and Ruszewski, A. (2022). Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices, International Journal of Applied Mathematics and Computer Science 32(1): 5–10, DOI: 10.34768/amcs-2022-0001.
  9. Kreinovich, V. (2016). Solving equations (and systems of equations) under uncertainty: How different practical problems lead to different mathematical and computational formulations, Granular Computing 1(3): 171–179.
  10. Lodwick, W. and Dubois, D. (2015). Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and Systems 281: 227–251.
  11. Lodwick, W. and Thipwiwatpotjana, P. (2017). Flexible and Generalized Uncertainty Optimization: Theory and Methods, Studies in Computational Intelligence, Vol. 696, Springer, Berlin/Heidelberg.
  12. Fortin, J., Dubois, D. and Fargier, H. (2008). Gradual numbers and their application to fuzzy interval analysis, IEEE Transactions on Fuzzy Systems 16(2): 388–402.
  13. Mazandarani, M., Pariz, N. and Kamyad, A. (2018). Granular differentiability of fuzzy-number-valued functions, IEEE Transactions on Fuzzy Systems 26(1): 310–323.
  14. Ngo, V. and Wu, W. (2021). Interval distribution power flow with relative-distance-measure arithmetic, IEEE Transactions on Smart Grid 12(5): 3858–3867.
  15. Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015.
  16. Piegat, A. and Landowski, M. (2012). Is the conventional interval-arithmetic correct?, Journal of Theoretical and Applied Computer Science 6(2): 27–44.
  17. Piegat, A. and Landowski, M. (2013). Two interpretations of multidimensional RDM interval arithmetic: Multiplication and division, International Journal of Fuzzy Systems 15(4): 486–496.
  18. Piegat, A. and Pluciński, M. (2015a). Computing with words with the use of inverse RDM models of membership functions, International Journal of Applied Mathematics and Computer Science 25(3): 675–688, DOI: 10.1515/amcs-2015-0049.
  19. Piegat, A. and Pluciński, M. (2015b). Fuzzy number addition with the application of horizontal membership functions, The Scientific World Journal 2015, Article ID: 367214.
  20. Piegat, A. and Pluciński, M. (2017). Fuzzy number division and the multi-granularity phenomenon, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 497–511.
  21. Piegat, A. and Pluciński, M. (2022a). The optimal tolerance solutions of the basic linear equation and the explanation of the Lodwick’s anomaly, Applied Sciences 12(4): 4382.
  22. Piegat, A. and Pluciński, M. (2022b). Realistic optimal tolerant solution of the quadratic interval equation and determining the optimal control decision on the example of plant fertilization, Applied Sciences 12(21): 10725.
  23. Shary, S. (1991). Optimal solution of interval linear algebraic systems, Interval Computations 2: 7–30.
  24. Shary, S. (1992). On controlled solution set of interval algebraic systems, Interval Computations 6(6): 66–75.
  25. Shary, S. (1994). Solving the tolerance problem for interval linear systems, Interval Computations 2: 6–26.
  26. Shary, S. (1995). Solving the linear interval tolerance problem, Mathematics and Computers in Simulation 39(1–2): 53–85.
  27. Siahlooei, E. and Shahzadeh Fazeli, S. (2018). Two iterative methods for solving linear interval systems, Applied Computational Intelligence and Soft Computing 2018, Article ID: 2797038.
  28. Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning—I, Information Sciences 8(3): 199–249.
DOI: https://doi.org/10.34768/amcs-2023-0018 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 229 - 247
Submitted on: Jul 26, 2022
Accepted on: Feb 2, 2023
Published on: Jun 23, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Andrzej Piegat, Marcin Pluciński, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.