Adj, G., Canales-Martínez, I., Cruz-Cortés, N., Menezes, A., Oliveira, T., Rivera-Zamarripa, L. and Rodríguez-Henríquez, F. (2018). Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields, Advances in Mathematics of Communications12(4): 741–759.
Ahlswede, R. (2016). Elliptic curve cryptosystems, in A. Ahlswede et al. (Eds), Hiding Data Selected Topics: Foundations in Signal Processing, Communications and Networking, Vol. 12, Cham, pp. 225–336, DOI: 10.1007/978-3-319-31515-7_4.
Alwen, J., Dodis, Y. and Wichs, D. (2009). Leakage-resilient public-key cryptography in the bounded-retrieval model, in S. Halevi (Ed.), Advances in Cryptology, CRYPTO 2009, Springer, Berlin, pp. 36–54.
Devidas, S., Rao Y.V., S. and Rekha, N.R. (2021). A decentralized group signature scheme for privacy protection in a blockchain, International Journal of Applied Mathematics and Computer Science31(2): 353–364, DOI: 10.34768/amcs-2021-0024.
Diffie, W. and Hellman, M. (1976). New directions in cryptography, IEEE Transactions on Information Theory22(6): 644–654, DOI: 10.1109/TIT.1976.1055638.
Dodis, Y., Franklin, M., Katz, J., Miyaji, A. and Yung, M. (2004). A generic construction for intrusion-resilient public-key encryption, in T. Okamoto (Ed.), Topics in Cryptology, CT-RSA 2004, Springer, Berlin/Heidelberg, pp. 81–98.
Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information Theory31(4): 469–472, DOI: 10.1109/TIT.1985.10570748.
Erra, R. and Grenier, C. (2009). The Fermat factorization method revisited, Cryptology ePrint Archive, Report 2009/318, https://eprint.iacr.org/2009/318.pdf.
Gordon, D. (2011). Discrete logarithm problem, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 352–353, DOI: 10.1007/978-1-4419-5906-5_445.
Kaliski, B. (2011). Euler’s totient function, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 430–430.
NIST (2019). Recommendation for pair-wise key establishment using integer factorization cryptography, NIST SP 800-56Br2, National Institute of Standards and Technology, Gaithersburg, DOI: 10.6028/NIST.SP.800-56Br2.
Pomerance, C. (1982). Analysis and comparison of some integer factoring algorithms, in H.W. Lenstra and R. Tijdeman (Eds), Computational Methods in Number Theory, Math Centrum, Amsterdam, pp. 89–139.
Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM21(2): 120–126, DOI: 10.1145/359340.359342.
Sako, K. (2011). Digital signature schemes, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 343–344.
Svenda, P., Nemec, M., Sekan, P., Kvasnovsky, R., Formanek, D., Komarek, D. and Matyas, V. (2016). The million-key question—Investigating the origins of RSA public keys, 25th USENIX Security Symposium (USENIX Security 16), Austin, USA, pp. 893–910.
Yasuda, M., Shimoyama, T., Kogure, J. and Izu, T. (2012). On the strength comparison of the ECDLP and the IFP, in I. Visconti and R. De Prisco (Eds), Security and Cryptography for Networks, Springer, Berlin, pp. 302–325.
Young, A. and Yung, M. (1996). The dark side of “black-box” cryptography or: Should we trust capstone?, in N. Koblitz (Ed.), Advances in Cryptology, CRYPTO’96, Springer, Berlin/Heidelberg, pp. 89–103.
Young, A. and Yung, M. (1997). Kleptography: Using cryptography against cryptography, in W. Fumy (Ed.), Advances in Cryptology, EUROCRYPT’97, Springer, Berlin/Heidelberg, pp. 62–74.