Have a personal or library account? Click to login

Lightweight Compression with Encryption Based on Asymmetric Numeral Systems

Open Access
|Mar 2023

References

  1. Alakuijala, J., Van Asseldonk, R., Boukortt, S., Bruse, M., Comşa, I.-M., Firsching, M., Fischbacher, T., Kliuchnikov, E., Gomez, S., Obryk, R. et al. (2019). JPEG XL next-generation image compression architecture and coding tools, Applications of Digital Image Processing XLII, San Diego, USA, pp. 112–124.
  2. ALC (2017). Apple LZFSE compressor, https://github.com/lzfse/lzfse.
  3. Baptista, M. (1998). Cryptography with chaos, Physics Letters A 240(1): 50–54.
  4. Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M., Heckert, N. and Banks, D. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST SP 800-22 Rev 1a, National Institute of Standards and Technology, Gaithersburg, https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic.
  5. Buzidi, H. (2014). LzTurbo compressor, https://sites.google.com/site/powturbo/.
  6. Camtepe, S., Duda, J., Mahboubi, A., Morawiecki, P., Nepal, S., Pawłowski, M. and Pieprzyk, J. (2021). CompCrypt—lightweight ANS-based compression and encryption, IEEE Transactions on Information Forensics and Security 16: 3859–3873.
  7. Cole, P.H. and Ranasinghe, D.C. (2008). Networked RFID Systems and Lightweight Cryptography, Springer, London.
  8. Collet, Y. (2013a). New generation entropy codecs: Finite state entropy and Huff 0, https://github.com/Cyan4973/FiniteStateEntropy.
  9. Collet, Y. (2013b). Zhuff compressor, http://fastcompression.blogspot.com/p/zhuff.html.
  10. Duda, J. (2009). Asymmetric numerical systems, arXiv: 0902.0271.
  11. Duda, J. (2014a). ANS toolkit, https://github.com/JarekDuda/AsymmetricNumeralSystemsToolkit.
  12. Duda, J. (2014b). Asymmetric numeral systems: Entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, arXiv: 1311.2540.
  13. Duda, J., Tahboub, K., Gadgil, N.J. and Delp, E.J. (2015). The use of asymmetric numeral systems as an accurate replacement for Huffman coding, 31st Picture Coding Symposium, Cairns, Australia, pp. 65–69.
  14. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A. and Uhsadel, L. (2007). A survey of lightweight-cryptography implementations, IEEE Design & Test of Computers 24(6): 522–533.
  15. El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011.
  16. FZC (2016). Facebook Zstandard compressor, https://github.com/facebook/zstd.
  17. Francesco, N. (2014). LZA compressor, http://heartofcomp.altervista.org/.
  18. Giesen, F. (2014). Simple rAns encoder/decoder, https://github.com/rygorous/ryg_rans.
  19. Gillman, D.W., Mohtashemi, M. and Rivest, R.L. (1996). On breaking a Huffman code, IEEE Transactions on Information Theory 42(3): 972–976.
  20. Huang, Z., Liu, S., Qin, B. and Chen, K. (2015). Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited, International Journal of Applied Mathematics and Computer Science 25(2): 415–430, DOI: 10.1515/amcs-2015-0032.
  21. Huffman, D. (1952). A method for the construction of minimum redundancy codes, Proceedings of the IRE 40(9): 1098–1101.
  22. Jakimoski, G. and Kocarev, L. (2001). Chaos and cryptography: Block encryption ciphers based on chaotic maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(2): 163–169.
  23. Kelley, J. and Tamassia, R. (2014). Secure compression: Theory & practice, Cryptology ePrint Archive, Report 2014/113, https://eprint.iacr.org/2014/113.
  24. Kim, H., Wen, J. and Villasenor, J.D. (2007). Secure arithmetic coding, IEEE Transactions on Signal Processing 55(5): 2263–2272.
  25. Külekci, M.O. (2012). On scrambling the Burrows–Wheeler transform to provide privacy in lossless compression, Computers & Security 31(1): 26–32.
  26. Mahboubi, A., Ansari, K., Camtepe, S., Duda, J., Morawiecki, P., Pawłowski, M. and Pieprzyk, J. (2022). Digital immunity module: Preventing unwanted encryption using source coding, TechRxiv, (preprint).
  27. Marpe, D., Schwarz, H. and Wiegand, T. (2003). Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Transactions on Circuits and Systems for Video Technology 13(7): 620–636.
  28. Martin, G. (1979). Range encoding: An algorithm for removing redundancy from a digitized message, Institution of Electronic and Radio Engineers International Conference on Video and Data Recording, Southampton, UK.
  29. Najmabadi, S.M., Wang, Z., Baroud, Y. and Simon, S. (2015). High throughput hardware architectures for asymmetric numeral systems entropy coding, 9th IEEE International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, pp. 256–259.
  30. Pieprzyk, J., Pawlowski, M., Morawiecki, P., Mahboubi, A., Duda, J. and Camtepe, S. (2022). Pseudorandom bit generation with asymmetric numeral systems, Cryptology ePrint Archive, Report 2022/005, https://ia.cr/2022/005.
  31. Poschmann, A.Y. (2009). Lightweight cryptography: Cryptographic engineering for a pervasive world, Cryptology ePrint Archive, Paper 2009/516, https://eprint.iacr.org/2009/516.
  32. Rissanen, J.J. (1976). Generalized Kraft inequality and arithmetic coding, IBM Journal of Research and Development 20(3): 198–203.
  33. Tseng, K.-K., Jiang, J.M., Pan, J.-S., Tang, L.L., Hsu, C.-Y. and Chen, C.-C. (2012). Enhanced Huffman coding with encryption for wireless data broadcasting system, IEEE International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, pp. 622–625.
  34. Witten, I.H. and Cleary, J.G. (1988). On the privacy afforded by adaptive text compression, Computers & Security 7(4): 397–408.
  35. Xie, D. and Kuo, C.-C. (2005). Secure Lempel–Ziv compression with embedded encryption, Electronic Imaging 2005, San Jose, USA pp. 318–327, DOI: 10.1117/12.590665.
DOI: https://doi.org/10.34768/amcs-2023-0004 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 45 - 55
Submitted on: Feb 7, 2022
Accepted on: Nov 9, 2022
Published on: Mar 29, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Jarosław Duda, Marcin Niemiec, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.