Have a personal or library account? Click to login
A Proximal–Based Algorithm for Piecewise Sparse Approximation with Application to Scattered Data Fitting Cover

A Proximal–Based Algorithm for Piecewise Sparse Approximation with Application to Scattered Data Fitting

Open Access
|Dec 2022

References

  1. Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1): 183–202, 10.1137/080716542.
  2. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
  3. Cai, J.F., Osher, S. and Shen, Z. (2009). Convergence of the linearized Bregman iteration for 1 norm minimization, Mathematics of Computation 78(268): 2127–2136.10.1090/S0025-5718-09-02242-X
  4. Cai, Z., Lan, T. and Zheng, C. (2016). Hierarchical MK splines: Algorithm and applications to data fitting, IEEE Transactions on Multimedia 19(5): 921–934.10.1109/TMM.2016.2640759
  5. Castaño, D. and Kunoth, A. (2005). Multilevel regularization of wavelet based fitting of scattered data some experiments, Numerical Algorithms 39(1): 81–96.10.1007/s11075-004-3622-0
  6. Deng, J., Chen, F., Li, X., Hu, C., Yang, Z. and Feng, Y. (2008). Polynomial splines over hierarchical T-meshes, Graphical Models 70(4): 76–86.10.1016/j.gmod.2008.03.001
  7. Franca, G., Robinson, D. and Vidal, R. (2018). ADMM and accelerated ADMM as continuous dynamical systems, International Conference on Machine Learning, PMLR 2018, Stockholm, Sweden, pp. 1559–1567.
  8. Giannelli, C., Jüttler, B. and Speleers, H. (2012). THB-splines: The truncated basis for hierarchical splines, Computer Aided Geometric Design 29(7): 485–498.10.1016/j.cagd.2012.03.025
  9. Hao, Y., Li, C. and Wang, R. (2018). Sparse approximate solution of fitting surface to scattered points by MLASSO model, Science China Mathematics 61(7): 1319–1336, DOI: 10.1007/s11425-016-9087-y.
  10. Hirsch, M.W., Smale, S. and Devaney, R.L. (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, Amsterdam.
  11. Johnson, M.J., Shen, Z. and Xu, Y. (2009). Scattered data reconstruction by regularization in B-spline and associated wavelet spaces, Journal of Approximation Theory 159(2): 197–223, DOI: 10.1016/j.jat.2009.02.005.
  12. Kraft, D. (1997). Adaptive and linearly independent multilevel B-splines, in Le Méhauté et al. (Eds), Surface Fitting and Multiresolution Methods, Vanderbilt University Press, Nashville, pp. 209–218.
  13. Lee, S., Wolberg, G. and Shin, S. (1997). Scattered data interpolation with multilevel B-splines, IEEE Transactions on Visualization and Computer Graphics 3(3): 228–244, DOI: 10.1109/2945.620490.
  14. Li, C. and Zhong, Y.J. (2019). Piecewise sparse recovery in union of bases, arXiv 1903.01208.
  15. McCoy, M.B. and Tropp, J.A (2014). Sharp recovery bounds for convex demixing, with applications, Foundations of Computational Mathematics 14(3): 503–567.10.1007/s10208-014-9191-2
  16. Moon, S. and Ko, K. (2018). A point projection approach for improving the accuracy of the multilevel b-spline approximation, Journal of Computational Design and Engineering 5(2): 173–179.10.1016/j.jcde.2017.10.004
  17. Ni, Q., Wang, X. and Deng, J. (2019). Modified PHT-splines, Computer Aided Geometric Design 73(1): 37–53.10.1016/j.cagd.2019.07.001
  18. Parikh, N. and Boyd, S. (2014). Proximal algorithms, Foundations and Trends in Optimization 1(3): 127–239, DOI: 10.1.1.398.7055.
  19. Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659–683, DOI: 10.34768/amcs-2021-0046.
  20. Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
  21. Sun, D., Toh, K.C. and Yang, L. (2015). A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization 25(2): 882–915.10.1137/140964357
  22. Starck, J.L., Elad, M. and Donoho, D.L. (2005). Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing 14(10): 1570–1582, DOI: 10.1109/TIP.2005.852206.
  23. Wang, F., Cao, W. and Xu, Z. (2018). Convergence of multi-block Bregman ADMM for nonconvex composite problems, Science China Information Sciences 61(12): 1–12.10.1007/s11432-017-9367-6
  24. Wei, D., Lai, M.J., Reng, Z. and Yin, W. (2017). Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing 71(2): 712–736.10.1007/s10915-016-0318-2
  25. Zhang, J. and Luo, Z.Q. (2020). A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization, SIAM Journal on Optimization 30(3): 2272–2302.10.1137/19M1242276
  26. Zhang, X., Burger, M. and Osher, S. (2011). A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing 46(1): 20–46.10.1007/s10915-010-9408-8
  27. Zhong, Y. and Li, C. (2020). Piecewise sparse recovery via piecewise inverse scale space algorithm with deletion rule, Journal of Computational Mathematics 38(2): 375–394, DOI: 10.4208/jcm.1810-m2017-0233.
DOI: https://doi.org/10.34768/amcs-2022-0046 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 671 - 682
Submitted on: Dec 16, 2021
Accepted on: Jun 13, 2022
Published on: Dec 30, 2022
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Yijun Zhong, Chongjun Li, Zhong Li, Xiaojuan Duan, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.