Have a personal or library account? Click to login
Analytical Performance Analysis of the M2M Wireless Link with an Antenna Selection System Over Interference Limited Dissimilar Composite Fading Environments Cover

Analytical Performance Analysis of the M2M Wireless Link with an Antenna Selection System Over Interference Limited Dissimilar Composite Fading Environments

Open Access
|Dec 2022

References

  1. Abdi, A., Gao, C. and Haimovich, A.M. (2003). Level crossing rate and average fade duration in MIMO mobile fading channels, 2003 IEEE 58th Vehicular Technology Conference, Orlando, USA, pp. 3164–3168.
  2. Agiwal, M., Roy, A. and Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey, IEEE Communications Surveys and Tutorials 18(3): 1617–1655.10.1109/COMST.2016.2532458
  3. Bithas, P., Efthymoglou, G. and Kanatas, A. (2018a). V2V cooperative relaying communications under interference and outdated CSI, IEEE Transactions on Vehicular Technology 67(4): 3466–3480.10.1109/TVT.2017.2786583
  4. Bithas, P., Kanatas, A., da Costa, D. and Upadhyay, P. (2018b). A low complexity communication technique for mobile-to-mobile communication systems, 14th IEEE International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, pp. 400–405.10.1109/IWCMC.2018.8450274
  5. Bithas, P., Kanatas, A., da Costa, D., Upadhyay, P. and Dias, U. (2017). On the double-generalized gamma statistics and their application to the performance analysis of V2V communications, IEEE Wireless Communications 66(1): 448–460.10.1109/TCOMM.2017.2757466
  6. Bithas, P.S., Nikolaidis, V., Kanatas, A.G. and Karagiannidis, G.K. (2020). UAV-to-ground communications: Channel modeling and UAV selection, IEEE Transactions on Communications 68(8): 5135–5144.10.1109/TCOMM.2020.2992040
  7. Dixit, D., Kumar, N., Sharma, S., Bhatia, V., Panic, S. and Stefanovic, C. (2021). On the ASER performance of UAV-based communication systems for QAM schemes, IEEE Communications Letters 25(6): 1835–1838.10.1109/LCOMM.2021.3058212
  8. Djosic, D., Stefanovic, C., Milic, D. and Stefanovic, M. (2019). System performances of SC reception in asymmetric multipath fading environments, The University Thought, Publication in Natural Sciences 9(2): 56–62.10.5937/univtho9-21769
  9. Djošić, D., Milošević, N., Nikolić, Z., Dimitrijević, B., Bandjur, M. and Stefanović, M. (2017). Statistics of signal to interference ratio process at output of mobile-to-mobile Rayleigh fading channel in the presence of cochannel interference, Facta Universitatis, Automatic Control and Robotics 16(2): 185–196.10.22190/FUACR1702185D
  10. Gradshteyn, I.S. and Ryzhik, I.M. (2000). Table of Integrals, Series, and Products, 6th Edn, Academic Press, New York.
  11. Hajri, N., Khedhiri, R. and Youssef, N. (2020). On selection combining diversity in dual-hop relaying systems over double Rice channels: Fade statistics and performance analysis, IEEE Access 8: 72188–72203, DOI: 10.1109/ACCESS.2020.2986142.
  12. Huang, C., Wang, R., Tang, P., He, R., Ai, B., Zhong, Z., Oestges, C. and Molisch, A. F. (2020). Geometry-cluster-based stochastic MIMO model for vehicle-to-vehicle communications in street canyon scenarios, IEEE Transactions on Wireless Communications 20(2): 755–770.10.1109/TWC.2020.3028249
  13. Ivanis, P., Drajic, D. and Vucetic, B. (2007). Level crossing rates of Ricean MIMO channel eigenvalues for imperfect and outdated CSI, IEEE Communications Letters 11(10): 775–777.10.1109/LCOMM.2007.070894
  14. Jaiswal, N. and Purohit, N. (2021). Performance analysis of NOMA-enabled vehicular communication systems with transmit antenna selection over double Nakagami-m fading, IEEE Transactions on Vehicular Technology 70(12): 12725–12741.10.1109/TVT.2021.3119979
  15. Jakes, W.C. and Cox, D.C. (1994). Microwave Mobile Communications, Wiley/IEEE Press, Hoboken.10.1109/9780470545287
  16. Khedhiri, R., Hajri, N., Youssef, N. and Pätzold, M. (2014). On the first-and second-order statistics of selective combining over double Nakagami-m fading channels, Proceedings of the 80th IEEE Vehicular Technology Conference (VTC2014–Fall), Vancouver, Canada, pp. 1–5.
  17. Kostić, I. (2005). Analytical approach to performance analysis for channel subject to shadowing and fading, IEE Proceedings—Communications 152(6): 821–827.10.1049/ip-com:20045126
  18. Marins, T.R.R., Dos Anjos, A.A., Da Silva, C.R.N., Peñarrocha, V.M.R., Rubio, L., Reig, J., De Souza, R.A.A. and Yacoub, M.D. (2021). Fading evaluation in standardized 5G millimeter-wave band, IEEE Access 9: 67268–67280, DOI: 10.1109/ACCESS.2021.3076631.
  19. Milenkovic, V., Panic, S., Denic, D. and Radenkovic, D. (2017). Novel method for 5G systems NLOS channels parameter estimation, International Journal of Antennas and Propagation 2017, Article ID: 5236246, DOI: 10.1155/2017/5236246.
  20. Milic, D., Djosic, D., Stefanovic, C., Panic, S. and Stefanovic, M. (2016). Second order statistics of the SC receiver over Rician fading channels in the presence of multiple Nakagami-m interferers, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 29: 222–229, DOI: 10.1002/jnm.2065.
  21. Milosevic, N., Stefanovic, C., Nikolic, Z., Bandjur, M. and Stefanovic, M. (2018a). First- and second-order statistics of interference-limited mobile-to-mobile Weibull fading channel, Journal of Circuits, Systems and Computers 27(11): 1850168.10.1142/S0218126618501682
  22. Milosevic, N., Stefanovic, M., Nikolic, Z., Spalevic, P. and Stefanovic, C. (2018b). Performance analysis of interference-limited mobile-to-mobile κ − μ fading channel, Wireless Personal Communications 101(3): 1685–1701.10.1007/s11277-018-5784-4
  23. Mumtaz, S., Huq, K. and Rodriguez, J. (2014). Direct mobile-to-mobile communication: Paradigm for 5G, IEEE Wireless Communications 21(5): 14–23.10.1109/MWC.2014.6940429
  24. Panic, S., Stefanovic, M., Anastasov, J. and Spalevic, P. (2013). Fading and Interference Mitigation in Wireless Communications, CRC Press, New York.10.1201/b16275
  25. Pavlović, D.H., Sekulović, N.M., Milovanović, G.V., Panajotović, A.S., Stefanović, Č.M. and Popović, J. Z. (2013). Statistics for ratios of Rayleigh, Rician, Nakagami–m, and Weibull distributed random variables, Mathematical Problems in Engineering 2013, Article no. 252804.
  26. Sekulović, N., Panajotović, A., Drača, D., Stefanović, M. and Bandjur, M. (2018). Investigation into diversity order at micro and/or macro level in gamma shadowed Nakagami-m fading channels, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 31: e2288, DOI: 10.1002/jnm.2288.
  27. Shankar, P. (2004). Error rates in generalized shadowed fading channels, Wireless Personal Communications 28: 233–238, DOI: 10.1023/B:wire.0000032253.68423.86.
  28. Silva, C.D., Bhargav, N., Leonardo, E. and Yacoub, M. (2019). Ratio of two envelopes taken from α − μ, κ − μ, and η − μ variates and some practical applications, IEEE Access 214(2): 256–261.
  29. Stefanovic, C., Panic, S., Bhatia, V. and Kumar, N. (2021). On second-order statistics of the composite channel models for UAV-to-ground communications with UAV selection, IEEE Open Journal of the Communications Society 2: 534–544, DOI: 10.1109/OJCOMS.2021.3064873.
  30. Stefanovic, C., Pratesi, M. and Santucci, F. (2018a). Performance evaluation of cooperative communications over fading channels in vehicular networks, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Spain, pp. 1–4.10.23919/URSI-AT-RASC.2018.8471604
  31. Stefanovic, C., Veljkovic, S., Stefanovic, M., Panic, S. and Jovkovic, S. (2018b). Second order statistics of SIR based macro diversity system for V2I communications over composite fading channels, First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, pp. 569–573.10.1109/ICSCCC.2018.8703293
  32. Stefanovic, D., Stefanovic, C., Djosic, D., Milic, D., Rancic, D. and Stefanovic, M. (2019). LCR of the ratio of the product of two squared Nakagami-m random processes and its application to wireless communication systems, 2019 18th International Symposium (INFOTEH), Jahorina, Bosnia and Herzegovina, pp. 1–4.
  33. Sun, W., Shen, L., Shao, H. and Liu, P. (2021). Dynamic location models of mobile sensors for travel time estimation on a freeway, International Journal of Applied Mathematics and Computer Science 31(2): 271–287, DOI: 10.34768/amcs-2021-0019.
  34. Talha, B. and Patzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review, IEEE Vehicular Technology Magazine 6(2): 33–43.10.1109/MVT.2011.940793
  35. Wang, L.C., Liu, W.C. and Cheng, Y.H. (2008). Statistical analysis of a mobile-to-mobile Rician fading channel model, IEEE Transactions on Vehicular Technology 58(1): 32–38.10.1109/TVT.2008.924999
  36. Wu, J. and Fan, P. (2016). A survey on high mobility wireless communications: Challenges, opportunities and solutions, IEEE Access 4: 450–476, DOI: 10.1109/ACCESS.2016.2518085.
DOI: https://doi.org/10.34768/amcs-2022-0040 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 569 - 582
Submitted on: Dec 29, 2021
Accepted on: Jul 18, 2022
Published on: Dec 30, 2022
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Danijel Ðošić, Dejan Milić, Nataša Kontrec, Časlav Stefanović, Srðan Milosavljević, Dušan M. Stefanović, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.