Have a personal or library account? Click to login
A Hybrid Control Strategy for a Dynamic Scheduling Problem in Transit Networks Cover

A Hybrid Control Strategy for a Dynamic Scheduling Problem in Transit Networks

By: Zhongshan Liu,  Bin Yu,  Li Zhang and  Wensi Wang  
Open Access
|Dec 2022

References

  1. Alesiani, F., Moreira-Matias, L. and Faizrahnemoon, M. (2018). On learning from inaccurate and incomplete traffic flow data, IEEE Transactions on Intelligent Transportation Systems 19(11): 3698–3708.10.1109/TITS.2018.2857622
  2. Argote-Cabanero, J., Daganzo, C.F. and Lynn, J.W. (2015). Dynamic control of complex transit systems, Transportation Research B: Methodological 81: 146–160.10.1016/j.trb.2015.09.003
  3. Aslani, M., Mesgari, M.S. and Wiering, M. (2017). Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events, Transportation Research C: Emerging Technologies 85: 732–752.10.1016/j.trc.2017.09.020
  4. Barnett, A. (1974). On controlling randomness in transit operations, Transportation Science 8(2): 102–116.10.1287/trsc.8.2.102
  5. Cao, S., Shao, H. and Shao, F. (2022). Sensor location for travel time estimation based on the user equilibrium principle: Application of linear equations, International Journal of Applied Mathematics and Computer Science 32(1): 23–33, DOI: 10.34768/amcs-2022-0003.
  6. Ceder, A. (1988). Designing transit short-turn trips with the elimination of imbalanced loads, in J.R. Daduna et al. (Eds), Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, Vol. 308, Springer, Berlin, pp. 288–303.10.1007/978-3-642-85966-3_25
  7. Ceder, A. and Stern, H.I. (1981). Deficit function bus scheduling with deadheading trip insertions for fleet size reduction, Transportation Science 15(4): 338–363.10.1287/trsc.15.4.338
  8. Cheng, Y., Huang, Y., Pang, B. and Zhang, W. (2018). ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler, Engineering Applications of Artificial Intelligence 74: 303–311.10.1016/j.engappai.2018.07.003
  9. Cortés, C.E., Jara-Díaz, S. and Tirachini, A. (2011). Integrating short turning and deadheading in the optimization of transit services, Transportation Research A: Policy and Practice 45(5): 419–434.10.1016/j.tra.2011.02.002
  10. Daganzo, C.F. and Pilachowski, J. (2011). Reducing bunching with bus-to-bus cooperation, Transportation Research B: Methodological 45(1): 267–277.10.1016/j.trb.2010.06.005
  11. Estrada, M., Mensión, J., Aymamí, J.M. and Torres, L. (2016). Bus control strategies in corridors with signalized intersections, Transportation Research C: Emerging Technologies 71: 500–520.10.1016/j.trc.2016.08.013
  12. Fang, K., Fan, J. and Yu, B. (2022). A trip-based network travel risk: Definition and prediction, Annals of Operations Research, DOI: 10.1007/s10479-022-04630-6.
  13. Farazi, N.P., Zou, B., Ahamed, T. and Barua, L. (2021). Deep reinforcement learning in transportation research: A review, Transportation Research Interdisciplinary Perspectives 11: 100425.10.1016/j.trip.2021.100425
  14. Fu, L. and Yang, X. (2002). Design and implementation of bus-holding control strategies with real-time information, Transportation Research Record 1791(1): 6–12.10.3141/1791-02
  15. Furth, P.G. (1985). Alternating deadheading in bus route operations, Transportation Science 19(1): 13–28.10.1287/trsc.19.1.13
  16. Furth, P.G. (1986). Zonal route design for transit corridors, Transportation Science 20(1): 1–12.10.1287/trsc.20.1.1
  17. Goeke, D. and Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles, European Journal of Operational Research 245(1): 81–99.10.1016/j.ejor.2015.01.049
  18. Guan, Y., Li, S.E., Duan, J., Li, J., Ren, Y., Sun, Q. and Cheng, B. (2021). Direct and indirect reinforcement learning, International Journal of Intelligent Systems 36(8): 4439–4467.10.1002/int.22466
  19. Hall, R., Dessouky, M. and Lu, Q. (2001). Optimal holding times at transfer stations, Computers & Industrial Engineering 40(4): 379–397.10.1016/S0360-8352(01)00039-0
  20. Hao, J., Liu, X., Shen, X. and Feng, N. (2019). Bilevel programming model of urban public transport network under fairness constraints, Discrete Dynamics in Nature and Society 2019: 2930502.10.1155/2019/2930502
  21. Hu, H., Jia, X., He, Q., Fu, S. and Liu, K. (2020). Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in Industry 4.0, Computers & Industrial Engineering 149: 106749.
  22. Jordan, W.C. and Turnquist, M.A. (1979). Zone scheduling of bus routes to improve service reliability, Transportation science 13(3): 242–268.10.1287/trsc.13.3.242
  23. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017). ImageNet classification with deep convolutional neural networks, Communications of the ACM 60(6): 84–90.10.1145/3065386
  24. Larrain, H., Giesen, R. and Muñoz, J.C. (2010). Choosing the right express services for bus corridor with capacity restrictions, Transportation Research Record 2197(1): 63–70.10.3141/2197-08
  25. Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M. and Viti, F. (2019). Multiline holding based control for lines merging to a shared transit corridor, Transportmetrica B: Transport Dynamics 7(1): 1062–1095.10.1080/21680566.2018.1548312
  26. Li, L., Lv, Y. and Wang, F.-Y. (2016). Traffic signal timing via deep reinforcement learning, IEEE/CAA Journal of Auto-matica Sinica 3(3): 247–254.10.1109/JAS.2016.7508798
  27. Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning, Applied Soft Computing 91: 106208.10.1016/j.asoc.2020.106208
  28. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. and Hassabis, D. (2015). Human-level control through deep reinforcement learning, Nature 518(7540): 529–533.10.1038/nature1423625719670
  29. Petit, A., Lei, C. and Ouyang, Y. (2019). Multiline bus bunching control via vehicle substitution, Transportation Research B: Methodological 126: 68–86.10.1016/j.trb.2019.05.009
  30. Petit, A., Ouyang, Y. and Lei, C. (2018). Dynamic bus substitution strategy for bunching intervention, Transportation Research B: Methodological 115: 1–16.10.1016/j.trb.2018.06.001
  31. Van Hasselt, H., Guez, A. and Silver, D. (2016). Deep reinforcement learning with double q-learning, Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, USA, pp. 2094–2100.
  32. Van Oort, N., Boterman, J. and van Nes, R. (2012). The impact of scheduling on service reliability: Trip-time determination and holding points in long-headway services, Public Transport 4(1): 39–56.10.1007/s12469-012-0054-4
  33. Vuchic, V.R. (1973). Skip-stop operation as a method for transit speed increase, Traffic Quarterly 27(2): 307–327.
  34. Wang, J. and Sun, L. (2020). Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework, Transportation Research C: Emerging Technologies 116: 102661.10.1016/j.trc.2020.102661
  35. Wang, P. and Chan, C.-Y. (2017). Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, pp. 1–6.
  36. Wang, T. and Tang, Y. (2021). Comprehensive evaluation of power flow and adjustment method to restore solvability based on GCRNN and DDQN, International Journal of Electrical Power & Energy Systems 133: 107160.10.1016/j.ijepes.2021.107160
  37. Wang, W., Chen, X., Musial, J. and Blazewicz, J. (2020). Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion, International Journal of Applied Mathematics and Computer Science 30(3): 573–584, DOI: 10.34768/amcs-2020-0042.
  38. Xuan, Y., Argote, J. and Daganzo, C.F. (2011). Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis, Transportation Research B: Methodological 45(10): 1831–1845.10.1016/j.trb.2011.07.009
  39. Zhu, Y., Mao, B., Bai, Y. and Chen, S. (2017). A bi-level model for single-line rail timetable design with consideration of demand and capacity, Transportation Research C: Emerging Technologies 85: 211–233.10.1016/j.trc.2017.09.002
DOI: https://doi.org/10.34768/amcs-2022-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 553 - 567
Submitted on: Dec 21, 2021
|
Accepted on: Jul 27, 2022
|
Published on: Dec 30, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Zhongshan Liu, Bin Yu, Li Zhang, Wensi Wang, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.