Ahrens, C. and Beylkin, G. (2009). Rotationally invariant quadratures for the sphere, Proceedings of the Royal Society A465(2110): 3103–3125.10.1098/rspa.2009.0104
Bazant, Z. and Oh, B. (1986). Efficient numerical integration on the surface of a sphere, Journal of Applied Mathematics and Mechanics66(11): 37–49.10.1002/zamm.19860660108
Bruno, O.P. and Kunyansky, L.A. (2001). A fast, high order algorithm for the solution of surface scattering problems: Basic implementation, tests and applications, Journal of Computational Physics169(1): 80–110.10.1006/jcph.2001.6714
Flyer, N. and Fornberg, B. (2011). Radial basis functions: Developments and applications to planetary scale flows, Computers and Fluids46(1): 23–32.10.1016/j.compfluid.2010.08.005
Flyer, N., Lehto, E., Blaise, S., Wright, G. and St-Cyr, A. (2012). A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere, Journal of Computational Physics231(11): 4078–4095.10.1016/j.jcp.2012.01.028
Flyer, N., Wright, G. and Fornberg, B. (2014). Radial basis function generated finite differences: A mesh-free method for computational geosciences, in M. Freeden et al. (Eds), Handbook of Geomathematics, Springer-Verlag, Berlin, pp. 2535–2669.
Fornberg, B. and Flyer, N. (2015). A Primer on Radial Basis Functions with Applications to the Geosciences, Society for Industrial and Applied Mathematics, Philadelphia.10.1137/1.9781611974041
Fornberg, B. and Martel, J. (2014). On spherical harmonics based numerical quadrature over the surface of a sphere, Advances in Computational Mathematics40(5–6): 1169–1184.10.1007/s10444-014-9346-3
Fornberg, B. and Piret, C. (2007). A stable algorithm for flat radial basis function on a sphere, SIAM Journal on Scientific Computing30(1): 60–80.10.1137/060671991
Fornberg, B. and Piret, C. (2008). On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, Journal of Computational Physics227(5): 2758–2780.10.1016/j.jcp.2007.11.016
Fuselier, E., Hangelbroek, T., Narcowich, F., Ward, J. and Wright, B. (2014). Kernel based quadrature on spheres and other homogeneous spaces, Numerische Mathematik127(1): 57–92.10.1007/s00211-013-0581-1
Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik1(1): 84–90.10.1007/BF01386213
Hesse, K., Sloan, I. and Womersley, R. (2010). Numerical integration on the sphere, in M. Freeden et al. (Eds), Handbook of Geomathematics, Springer-Verlag, Berlin, pp. 1187–1219.10.1007/978-3-642-01546-5_40
Klöckner, A., Barnett, A., Greengard, L. and O’Neil, M. (2013). Quadrature by expansion: A new method for the evaluation of layer potentials, Journal of Computational Physics252: 332–349.10.1016/j.jcp.2013.06.027
Klinteberg, L. and Tornberg, A.K. (2016). A fast integral equation method for solid particles in viscous flow using quadrature by expansion, Journal of Computational Physics326: 420–445.10.1016/j.jcp.2016.09.006
Reeger, J. and Fornberg, B. (2016). Numerical quadrature over the surface of a sphere, Studies in Applied Mathematics137(1): 174–188.10.1111/sapm.12106
Reeger, J., Fornberg, B. and Watts, L. (2016). Numerical quadrature over smooth, closed surfaces, Proceedings of the Royal Society A472(2194): 20160401.10.1098/rspa.2016.0401509544327843402
Sommariva, A. and Womersley, R. (2005). Integration by RBF over the sphere, Applied Mathematics Report amr05/17, University of New South Wales, Sydney.