Have a personal or library account? Click to login

A Single Image Deblurring Approach Based on a Fractional Order Dark Channel Prior

By:
Open Access
|Oct 2022

References

  1. An, S., Roh, H. and Kang, M. (2020). Long-term residual blending network for blur invariant single image blind deblurring, arXiv: 2007.04543.
  2. Cho, S. and Lee, S. (2009). Fast motion deblurring, ACM SIGGRAPH Asia 28(5): 1–8.10.1145/1618452.1618491
  3. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T. and Freeman, W.T. (2006). Removing camera shake from a single photograph, ACM Transactions on Graphics 25(3): 787–794.10.1145/1141911.1141956
  4. Fuhai, C., Rongrong, J., Chengpeng, D., Xiaoshuai, S., Chia-Wen, L., Jiayi, J., Baochang, Z., Feiyue, H. and Liujuan, C. (2019). Semantic-aware image deblurring, arXiv: 1910.03853.
  5. Gao, D., Liu, J., Wu, R., Cheng, D., Fan, X. and Tang, X. (2019). Utilizing relevant RGB-D data to help recognize RGB images in the target domain, International Journal of Applied Mathematics and Computer Science 29(3): 611–621, DOI: 10.2478/amcs-2019-0045.10.2478/amcs-2019-0045
  6. Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., Van Den Hengel, A. and Shi, Q. (2017). From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 3806–3815.
  7. He, K., Sun, J. and Tang, X. (2009). Single image haze removal using dark channel prior, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1956–1963.
  8. Jia, H. and Pu, Y. (2008). Fractional calculus method for enhancing digital image of bank slip, 2008 Congress on Image and Signal Processing, Sanya, China, Vol. 3, pp. 326–330.
  9. Joshi, N., Zitnick, C.L., Szeliski, R. and Kriegman, D.J. (2009). Image deblurring and denoising using color priors, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1550–1557.
  10. Kohler, R., Hirsch, M., Mohler, B., Scholkopf, B. and Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database, 2012 European Conference on Computer Vision, Florence, Italy, pp. 27–40.
  11. Kotera, J., Smidl, V. and Sroubek, F. (2017). Blind deconvolution with model discrepancies, IEEE Transactions on Image Processing 26(5): 2533–2544.10.1109/TIP.2017.267698128278468
  12. Kotera, J., Šroubek, F. and Milanfar, P. (2013). Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors, in R. Wilson et al. (Eds), Computer Analysis of Images and Patterns, Springer, Berlin/Heidelberg, pp. 59–66.10.1007/978-3-642-40246-3_8
  13. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. (2018). DeblurGAN: Blind motion deblurring using conditional adversarial networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 8183–8192.
  14. Lai, W.-S., Ding, J.-J., Lin, Y.-Y. and Chuang, Y.-Y. (2015). Blur kernel estimation using normalized color-line priors, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 64–72.
  15. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N. and Yang, M.H. (2016). A comparative study for single image blind deblurring, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 1701–1709.
  16. Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2009). Understanding and evaluating blind deconvolution algorithms, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1964–1971.
  17. Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2011). Efficient marginal likelihood optimization in blind deconvolution, 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2657–2664.
  18. Li, B. and Xie, W. (2015). Adaptive fractional differential approach and its application to medical image enhancement, Computers & Electrical Engineering 45(C): 324–335.10.1016/j.compeleceng.2015.02.013
  19. Li, B. and Xie, W. (2016). Image denoising and enhancement based on adaptive fractional calculus of small probability strategy, Neurocomputing 175(Part A): 704 – 714.10.1016/j.neucom.2015.10.115
  20. Li, J. and Lu, W. (2016). Blind image motion deblurring with 0-regularized priors, Journal of Visual Communication & Image Representation 40(Part A): 14–23.10.1016/j.jvcir.2016.06.003
  21. Li, P., Prieto, L., Mery, D. and Flynn, P.J. (2019). On low-resolution face recognition in the wild: Comparisons and new techniques, IEEE Transactions on Information Forensics and Security 14(8): 2000–2012.10.1109/TIFS.2018.2890812
  22. Liu, Y., Wang, J., Cho, S., Finkelstein, A. and Rusinkiewicz, S. (2013). A no-reference metric for evaluating the quality of motion deblurring, ACM Transactions on Graphics 32(6): 175:1–175:12.10.1145/2508363.2508391
  23. Matychyn, I. and Onyshchenko, V. (2021). Time-optimal control of linear fractional systems with variable coefficients, International Journal of Applied Mathematics and Computer Science 31(3): 375–386, DOI: 10.34768/amcs-2021-0025.
  24. Pan, J., Hu, Z., Su, Z. and Yang, M.H. (2014a). Deblurring text images via 0-regularized intensity and gradient prior, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp. 2901–2908.10.1109/CVPR.2014.371
  25. Pan, J., Liu, R., Su, Z. and Liu, G. (2014b). Motion blur kernel estimation via salient edges and low rank prior, 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, pp. 1–6.10.1109/ICME.2014.6890182
  26. Pan, J., Sun, D., Pfister, H. and Yang, M. (2018). Deblurring images via dark channel prior, IEEE Transactions on Pattern Analysis and Machine Intelligence 40(10): 2315–2328.10.1109/TPAMI.2017.275380428952935
  27. Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W. and Yang, M.H. (2016). Image deblurring via enhanced low-rank prior, IEEE Transactions on Image Processing 25(7): 3426–3437.10.1109/TIP.2016.257106228113429
  28. Shan, Q., Jia, J. and Agarwala, A. (2008). High-quality motion deblurring from a single image, ACM Transactions on Graphics 27(3): 1–10.10.1145/1360612.1360672
  29. Sun, L., Cho, S., Wang, J. and Hays, J. (2013). Edge-based blur kernel estimation using patch priors, IEEE International Conference on Computational Photography (ICCP), Cambridge, USA, pp. 1–8.
  30. Wang, H., Pan, J., Su, Z. and Liang, S. (2018). Blind image deblurring using elastic-net based rank prior, Computer Vision and Image Understanding 168: 157–171.10.1016/j.cviu.2017.11.015
  31. Wang, Z., Simoncelli, E.P. and Bovik, A.C. (2003). Multiscale structural similarity for image quality assessment, 37th Asilomar Conference on Signals, Systems Computers, Pacific Grove, USA, Vol. 2, pp. 1398–1402.
  32. Chen, X., Yang, Q.W. and Wu, J. (2010). Image deblur in gradient domain, Optical Engineering 49(11): 49–49–7.10.1117/1.3505868
  33. Xie, Z. (2016). A primal-dual method with linear mapping for a saddle point problem in image deblurring, Journal of Visual Communication & Image Representation 42: 112–120.10.1016/j.jvcir.2016.11.011
  34. Xu, L. and Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring, Proceedings of the 11th European Conference on Computer Vision: ECCV’10, Heraklion, Crete, Greece, Part I, pp. 157–170.
  35. Xu, L., Zheng, S. and Jia, J. (2013). Unnatural L0 sparse representation for natural image deblurring, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 1107–1114.
  36. Yan, Y., Ren, W., Guo, Y., Wang, R. and Cao, X. (2017). Image deblurring via extreme channels prior, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 6978–6986.
  37. Yin, M., Gao, J., Tien, D. and Cai, S. (2014). Blind image deblurring via coupled sparse representation, Journal of Visual Communication & Image Representation 25(5): 814–821.10.1016/j.jvcir.2014.02.003
  38. Zhang, H., Dai, Y., Li, H. and Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, pp. 5971–5979.
  39. Zhichao, F., Yingbin, Z., Hao, Y., Yu, K., Jing, Y. and Liang, H. (2019). Edge-aware deep image deblurring, arXiv: 1907.02282.
  40. Zhong, L., Cho, S., Metaxas, D., Paris, S. and Wang, J. (2013). Handling noise in single image deblurring using directional filters, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 612–619.
DOI: https://doi.org/10.34768/amcs-2022-0032 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 441 - 454
Submitted on: Oct 3, 2021
Accepted on: Mar 5, 2022
Published on: Oct 8, 2022
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Xiaoyuan Yu, Wei Xie, Jinwei Yu, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.