Brugada, J., Katritsis, D.G. and Arbelo, E. (2019). Guidelines of the European Society of Cardiology regarding diagnostics and treatment of patients with supraventricular tachycardia, Kardiologia Polska (Polish Heart Journal)2(1): 1–74, (in Polish).
Di Francesco, D. and Noble, D. (1985). A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philosophical Transactions of the Royal Society of London B307(1): 353–398, DOI: 10.1098/rstb.1985.0001.2578676
Dieci, L., Li, W. and Zhou, H. (2016). A new model for realistic random perturbations of stochastic oscillators, Journal of Differential Equations261(4): 2502–2527, DOI: 10.1016/j.jde.2016.05.005.
Downing, K.F., Simeone, R.H., Oster, M.F. and Farr, S.L. (2022). Critical illness among patients hospitalized with acute COVID-19 with and without congenital heart defects, Circulation145: 1182–1184.10.1161/CIRCULATIONAHA.121.057833898960435249378
Gamilov, T.M., Liang, F.Y. and Simakov, S.S. (2019). Mathematical modeling of the coronary circulation during cardiac pacing and tachycardia, Lobachevskii Journal of Mathematics40(1): 448–458, DOI: 10.1134/S1995080219040073.
Ghorbanian, P., Ramakrishian, S.,Whitman, A. and Ashrafiuom, H. (2015). A phenomenological model of EEG based on the dynamics of a stochastic Duffing–van der Pol oscillator network, Biomedical Signal Processing and Control15(1): 1–10, DOI: 10.1016/j.bspc.2014.08.013.
Grudziński, K. (2007). Modeling of the Electrical Activity of the Heart’s Conduction System, PhD thesis, Warsaw University of Technology, Warsaw, (in Polish).
Henggui, Z., Zhang, P., Aslanidi, O.V., Noble, D. and Boyett, M.R. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells, Philosophical Transactions of the Royal Society A367(1): 2225–2255, DOI:10.1098/rsta.2008.0283.10.1098/rsta.2008.028319414454
Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal Physiology117(4): 500–544, DOI: 10.1113/jphysiol.1952.sp004764.10.1113/jphysiol.1952.sp004764139241312991237
Jackowska-Zduniak, B. and Foryś, U. (2016). Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology, Mathematical Biosciences and Engineering13(6): 1143–1158, DOI: 10.3934/mbe.2016035.10.3934/mbe.201603527775372
Jackowska-Zduniak, B. and Foryś, U. (2018). Mathematical model of two types of atrioventricular nodal reentrant tachycardia: Slow/fast and slow/slow, in J. Awrejcewicz (Ed.), Dynamical Systems in Theoretical Perspective. DSTA 2017, Springer, Cham, pp. 169–182.10.1007/978-3-319-96598-7_14
Kaneko, Y., Nakajima, T., Iizuka, T. and Tamura, S. (2020). Atypical slow-slow atrioventricular nodal reentrant tachycardia with use of a superior slow pathway, International Heart Journal61(2): 380–383, DOI: 10.1536/ihj.19-082.10.1536/ihj.19-08231875615
Katrisis, D. and Josephson, M. (2016). Electrophysiological features and therapy of atrioventricular nodal reentrant tachycardia, Arrhythmia and Electrophysiology Review5(2): 130–135, DOI: 10.15420/aer.2016.18.2.10.15420/AER.2016.18.2
Leung, H. (1998). Stochastic Hopf bifurcation in a biased van der Pol model, Physica A: Statistical Mechanics and Its Applications254(2): 146–155.10.1016/S0378-4371(98)00017-X
Li, Y., Wu, Z. and Wang, F. (2019a). Stochastic p-bifurcation in a generalized van der Pol oscillator with fractional delayed feedback excited by combined Gaussian white noise excitations, Journal of Low Frequency Noise, Vibration and Active Control40(1): 91–103.10.1177/1461348419878534
Li, Y., Wu, Z. and Zhang, G. (2019b). Stochastic p-bifurcation in a bistable van der Pol oscillator with fractional time-delay feedback under Gaussian white noise excitation, Advances in Difference Equations2019: 448, DOI:10.1186/s13662-019-2356-1.10.1186/s13662-019-2356-1
Małaczyńska-Rajpold, K., Błaszczyk, K. and Koźluk, E. (2012). Atrioventricular nodal reentrant tachycardia, Polski Przegla˛d Kardiologiczny14(3): 196–203, (in Polish).
Mani, B.C. and Pavri, B. (2014). Dual atrioventricular nodal pathways physiology: A review of relevant anatomy, electrophysiology, and electrocardiographic manifestations, Indian Pacing Electrophysical Journal14(1): 12–25, DOI: 10.1016/s0972-6292(16)30711-2.10.1016/S0972-6292(16)30711-2
Mobitz, W. (1924). Uber die unvollständige störung der erregungs-überleitung zwischen vorhof und kammer des menschlichen herzens, Zeitschrift für die gesamte experimentelle Medizin41(1): 380–383, DOI: 10.1536/ihj.19-082.10.1536/ihj.19-08231875615
Nagumo, J., Arimoto, S. and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon, Proceedings of the IRE50(1): 2061–2070.10.1109/JRPROC.1962.288235
Postnov, D., Han, S.K. and Kook, H. (1999). Synchronization of diffusively coupled oscillators near the homoclinic bifurcation, Physical Review E60(3): 2799–2807.10.1103/PhysRevE.60.2799
Shenghong, L., Quanxin, Z. and Zudi, L. (2018). Probability density and stochastic stability for the coupled van der Pol oscillator system, Cogent Mathematics and Statistics5(1): 1431092, DOI: 10.1080/23311835.2018.1431092.10.1080/23311835.2018.1431092
Tusscher, K.H.W.J. and Panfilov, A.V. (2006). Alternans and spiral breakup in a human ventricular tissue model, American Journal of Physiology-Heart and Circulatory Physiology291(1): H1088–H1100.10.1152/ajpheart.00109.200616565318
van der Pol, B. and van der Mark, J. (1928). The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Philosophical Magazine and Journal of Science6(38): 763–775, DOI: 10.1080/14786441108564652.10.1080/14786441108564652
Zduniak, B., Bodnar, M. and Foryś, U. (2014). A modified van der Pol equation with delay in a description of the heart action, International Journal of Applied Mathematics and Computer Science24(4): 853–863, DOI: 10.2478/amcs-2014-0063.10.2478/amcs-2014-0063