Have a personal or library account? Click to login

Stochastic Models of the Slow/Fast Type of Atrioventricular Nodal Reentrant Tachycardia and Tachycardia with Conduction Aberration

Open Access
|Oct 2022

References

  1. Brugada, J., Katritsis, D.G. and Arbelo, E. (2019). Guidelines of the European Society of Cardiology regarding diagnostics and treatment of patients with supraventricular tachycardia, Kardiologia Polska (Polish Heart Journal) 2(1): 1–74, (in Polish).
  2. Di Francesco, D. and Noble, D. (1985). A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philosophical Transactions of the Royal Society of London B 307(1): 353–398, DOI: 10.1098/rstb.1985.0001.2578676
  3. Dieci, L., Li, W. and Zhou, H. (2016). A new model for realistic random perturbations of stochastic oscillators, Journal of Differential Equations 261(4): 2502–2527, DOI: 10.1016/j.jde.2016.05.005.
  4. Downing, K.F., Simeone, R.H., Oster, M.F. and Farr, S.L. (2022). Critical illness among patients hospitalized with acute COVID-19 with and without congenital heart defects, Circulation 145: 1182–1184.10.1161/CIRCULATIONAHA.121.057833898960435249378
  5. Gamilov, T.M., Liang, F.Y. and Simakov, S.S. (2019). Mathematical modeling of the coronary circulation during cardiac pacing and tachycardia, Lobachevskii Journal of Mathematics 40(1): 448–458, DOI: 10.1134/S1995080219040073.
  6. Ghorbanian, P., Ramakrishian, S.,Whitman, A. and Ashrafiuom, H. (2015). A phenomenological model of EEG based on the dynamics of a stochastic Duffing–van der Pol oscillator network, Biomedical Signal Processing and Control 15(1): 1–10, DOI: 10.1016/j.bspc.2014.08.013.
  7. Grudziński, K. (2007). Modeling of the Electrical Activity of the Heart’s Conduction System, PhD thesis, Warsaw University of Technology, Warsaw, (in Polish).
  8. Henggui, Z., Zhang, P., Aslanidi, O.V., Noble, D. and Boyett, M.R. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells, Philosophical Transactions of the Royal Society A 367(1): 2225–2255, DOI:10.1098/rsta.2008.0283.10.1098/rsta.2008.028319414454
  9. Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal Physiology 117(4): 500–544, DOI: 10.1113/jphysiol.1952.sp004764.10.1113/jphysiol.1952.sp004764139241312991237
  10. Jackowska-Zduniak, B. and Foryś, U. (2016). Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology, Mathematical Biosciences and Engineering 13(6): 1143–1158, DOI: 10.3934/mbe.2016035.10.3934/mbe.201603527775372
  11. Jackowska-Zduniak, B. and Foryś, U. (2018). Mathematical model of two types of atrioventricular nodal reentrant tachycardia: Slow/fast and slow/slow, in J. Awrejcewicz (Ed.), Dynamical Systems in Theoretical Perspective. DSTA 2017, Springer, Cham, pp. 169–182.10.1007/978-3-319-96598-7_14
  12. Kaneko, Y., Nakajima, T., Iizuka, T. and Tamura, S. (2020). Atypical slow-slow atrioventricular nodal reentrant tachycardia with use of a superior slow pathway, International Heart Journal 61(2): 380–383, DOI: 10.1536/ihj.19-082.10.1536/ihj.19-08231875615
  13. Katrisis, D. and Josephson, M. (2016). Electrophysiological features and therapy of atrioventricular nodal reentrant tachycardia, Arrhythmia and Electrophysiology Review 5(2): 130–135, DOI: 10.15420/aer.2016.18.2.10.15420/AER.2016.18.2
  14. Konturek, S. (2001). The Human Physiology: The Cardiovascular System, Jagiellonian University Press, Cracow.
  15. Kussela, T. (2004). Stochastic heart-rate model can reveal pathologic cardiac dynamics, Physical Review E 69(3): 031916–031923, DOI: 10.1103/PhysRevE.69.031916.10.1103/PhysRevE.69.031916
  16. Leung, H. (1998). Stochastic Hopf bifurcation in a biased van der Pol model, Physica A: Statistical Mechanics and Its Applications 254(2): 146–155.10.1016/S0378-4371(98)00017-X
  17. Li, Y., Wu, Z. and Wang, F. (2019a). Stochastic p-bifurcation in a generalized van der Pol oscillator with fractional delayed feedback excited by combined Gaussian white noise excitations, Journal of Low Frequency Noise, Vibration and Active Control 40(1): 91–103.10.1177/1461348419878534
  18. Li, Y., Wu, Z. and Zhang, G. (2019b). Stochastic p-bifurcation in a bistable van der Pol oscillator with fractional time-delay feedback under Gaussian white noise excitation, Advances in Difference Equations 2019: 448, DOI:10.1186/s13662-019-2356-1.10.1186/s13662-019-2356-1
  19. Małaczyńska-Rajpold, K., Błaszczyk, K. and Koźluk, E. (2012). Atrioventricular nodal reentrant tachycardia, Polski Przegla˛d Kardiologiczny 14(3): 196–203, (in Polish).
  20. Mani, B.C. and Pavri, B. (2014). Dual atrioventricular nodal pathways physiology: A review of relevant anatomy, electrophysiology, and electrocardiographic manifestations, Indian Pacing Electrophysical Journal 14(1): 12–25, DOI: 10.1016/s0972-6292(16)30711-2.10.1016/S0972-6292(16)30711-2
  21. Mobitz, W. (1924). Uber die unvollständige störung der erregungs-überleitung zwischen vorhof und kammer des menschlichen herzens, Zeitschrift für die gesamte experimentelle Medizin 41(1): 380–383, DOI: 10.1536/ihj.19-082.10.1536/ihj.19-08231875615
  22. Nagumo, J., Arimoto, S. and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50(1): 2061–2070.10.1109/JRPROC.1962.288235
  23. Postnov, D., Han, S.K. and Kook, H. (1999). Synchronization of diffusively coupled oscillators near the homoclinic bifurcation, Physical Review E 60(3): 2799–2807.10.1103/PhysRevE.60.2799
  24. Qu, Z., Hu, G., Garfinkel, A. and Weiss, J.N. (2014). Nonlinear and stochastic dynamics in the heart, Physics Reports 543(2): 61–162, DOI:10.1016/j.physrep.2014.05.002.10.1016/j.physrep.2014.05.002417548025267872
  25. Shenghong, L., Quanxin, Z. and Zudi, L. (2018). Probability density and stochastic stability for the coupled van der Pol oscillator system, Cogent Mathematics and Statistics 5(1): 1431092, DOI: 10.1080/23311835.2018.1431092.10.1080/23311835.2018.1431092
  26. Tusscher, K.H.W.J. and Panfilov, A.V. (2006). Alternans and spiral breakup in a human ventricular tissue model, American Journal of Physiology-Heart and Circulatory Physiology 291(1): H1088–H1100.10.1152/ajpheart.00109.200616565318
  27. van der Pol, B. (1926). On “relaxation-oscillations”, Philosophical Magazine and Journal of Science 7(2): 978–992.10.1080/14786442608564127
  28. van der Pol, B. and van der Mark, J. (1928). The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Philosophical Magazine and Journal of Science 6(38): 763–775, DOI: 10.1080/14786441108564652.10.1080/14786441108564652
  29. Zduniak, B., Bodnar, M. and Foryś, U. (2014). A modified van der Pol equation with delay in a description of the heart action, International Journal of Applied Mathematics and Computer Science 24(4): 853–863, DOI: 10.2478/amcs-2014-0063.10.2478/amcs-2014-0063
  30. Zheng, J., Skufca, J.D. and Bollt, E.M. (2013). Heart rate variability as determinism with jump stochastic parameters, Mathematical Biosciences and Engineering 10(4): 1253–64, DOI: 10.3934/mbe.2013.10.1253.10.3934/mbe.2013.10.125323906210
DOI: https://doi.org/10.34768/amcs-2022-0031 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 429 - 440
Submitted on: Sep 29, 2021
Accepted on: May 30, 2022
Published on: Oct 8, 2022
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Beata Jackowska-Zduniak, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.