Babic, Z., Pilipovic, R., Risojevic, V. and Mirjanic, G. (2016). Pollen bearing honey bee detection in hive entrance video recorded by remote embedded system for pollination monitoring, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information SciencesIII–7: 51–57.10.5194/isprs-annals-III-7-51-2016
Balta, A., Dogan, S., Ozmen Koca, G. and Akbal, E. (2017). Software modeling of remote controlled beehive design, International Conference on Advances and Innovations in Engineering (ICAIE), Elziˇg, Turkey, pp. 1–6.
Barron, A.B. (2015). Death of the bee hive: Understanding the failure of an insect society, Current Opinion in Insect Science10: 45–50.10.1016/j.cois.2015.04.004
Bayir, R. and Albayrak, A. (2016). The monitoring of nectar flow period of honey bees using wireless sensor networks, International Journal of Distributed Sensor Networks12(11): 1–8.10.1177/1550147716678003
Bencsik, M., Bencsik, J., Baxter, M., Lucian, A., Romieu, J. and Millet, M. (2011). Identification of the honey bee swarming process by analysing the time course of hive vibrations, Computers and Electronics in Agriculture76(1): 44–50.10.1016/j.compag.2011.01.004
Bjerge, K., Frigaard, C.E., Mikkelsen, P.H., Nielsen, T.H., Misbih, M. and Kryger, P. (2019). A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony, Computers and Electronics in Agriculture164: 104898.10.1016/j.compag.2019.104898
Boecking, O. and Genersch, E. (2008). Varroosis—The ongoing crisis in bee keeping, Journal für Verbraucherschutz und Lebensmittelsicherheit3: 221–228.10.1007/s00003-008-0331-y
Bojanic Rasovic, M., Davidović, V. and Joksimović-Todorović, M. (2018). Measures to protect bee health against varroosis in Montenegro, Acta Agriculturae Serbica23(46): 177–185.10.5937/AASer1846177B
Braga, A.R., Hassler, E.E., Gomes, D.G., Freitas, B.M. and Cazier, J.A. (2019). IoT for development: Building a classification algorithm to help beekeepers detect honeybee health problems early, Americas Conference on Information Systems (AMCIS), Cancún, Mexico, pp. 1–10.
Campbell, J., Mummert, L. and Sukthankar, R. (2008). Video monitoring of honey bee colonies at the hive entrance, Workshop on Visual Observation and Analysis of Vertebrate and Insect Behaviour (ICPR), Tampa, USA, Vol. 8, pp. 1–4.
Chen, C., Yang, E.-C., Jiang, J.-A. and Lin, T.-T. (2012). An imaging system for monitoring the in-and-out activity of honey bees, Computers and Electronics in Agriculture89: 100 – 109.10.1016/j.compag.2012.08.006
Chen, Y.-L., Chien, H.-Y., Hsu, T.-H., Jing, Y.-J., Lin, C.-Y. and Lin, Y.-C. (2020). A PI-based beehive IoT system design, in C.-N. Yang et al. (Eds), Security with Intelligent Computing and Big-Data Services, Springer International Publishing, Cham, pp. 535–543.10.1007/978-3-030-16946-6_43
Chen, Y.P. and Siede, R. (2007). Honey bee viruses, in K. Maramorosch et al. (Eds), Advances in Virus Research, Academic Press, Cambridge, pp. 33–80.10.1016/S0065-3527(07)70002-7
Dasig, D.D. and Mendez, J.M. (2020). An IoT and wireless sensor network-based technology for a low-cost precision apiculture, in P. Pattnaik et al. (Eds), Internet of Things and Analytics for Agriculture, Springer, Singapore, Vol. 2, pp. 67–92.10.1007/978-981-15-0663-5_4
Debauche, O., Moulat, M.E., Mahmoudi, S., Boukraa, S., Manneback, P. and Lebeau, F. (2018). Web monitoring of bee health for researchers and beekeepers based on the Internet of things, Procedia Computer Science130: 991–998.10.1016/j.procs.2018.04.103
Dineva, K. and Atanasova, T. (2018). OSEMN process for working over data acquired by IoT devices mounted in beehives, Current Trends in Natural Sciences7(13): 47–53.
Domański, A., Domańska, J., Czachórski, T., Klamka, J., Szyguła, J. and Marek, D. (2021). The IoT gateway with active queue management, International Journal of Applied Mathematics and Computer Science31(1): 165–178, Doi: 10.34768/amcs-2021-0012.
Edwards-Murphy, F., Magno, M., Whelan, P.M., O’Halloran, J. and Popovici, E.M. (2016). b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring, Computers and Electronics in Agriculture124: 211–219.10.1016/j.compag.2016.04.008
Elizondo, V., Briceno, J., Travieso, C. and Alonso, J. (2013). Video monitoring of a mite in honeybee cells, Advanced Materials Research664: 1107–1113.10.4028/www.scientific.net/AMR.664.1107
Fitzgerald, D.W., Murphy, F.E., Wright, W.M.D., Whelan, M. and Popovici, E.M. (2015). Design and development of a smart weighing scale for beehive monitoring, 2015 26th Irish Signals and Systems Conference (ISSC), Carlow, Ireland, pp. 1–6.
Gołosz, M. and Mrozek, D. (2019). Exploration of data from smart bands in the cloud and on the edge—The impact on the data storage space, in J.M.F. Rodrigues et al. (Eds), Computational Science—ICCS 2019, Springer International Publishing, Cham, pp. 607–620.10.1007/978-3-030-22744-9_47
Grzesik, P. and Mrozek, D. (2021). Metagenomic analysis at the edge with Jetson Xavier NX, in M. Paszynski et al. (Eds), Computational Science—ICCS 2021, Springer International Publishing, Cham, pp. 500–511.10.1007/978-3-030-77970-2_38
Guzmán-Novoa, E., Eccles, L., Calvete, Y., Mcgowan, J., Kelly, P.G. and Correa-Benítez, A. (2010). Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada, Apidologie41(4): 443–450.10.1051/apido/2009076
Kontogiannis, S. (2019). An Internet of things-based low-power integrated beekeeping safety and conditions monitoring system, Inventions4(3): 1–26.10.3390/inventions4030052
Kviesis, A. and Zacepins, A. (2015). System architectures for real-time bee colony temperature monitoring, ICTE in Regional Development, Valmiera, Latvia, pp. 86–94.
Machhamer, R., Altenhofer, J., Ueding, K., Czenkusch, L., Stolz, F., Harth, M., Mattern, M., Latif, A., Haab, S., Herrmann, J., Schmeink, A., Gollmer, K. and Dartmann, G. (2020). Visual programmed IoT beehive monitoring for decision aid by machine learning based anomaly detection, 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1–5.
Marstaller, J., Tausch, F. and Stock, S. (2019). DeepBees—Building and scaling convolutional neuronal nets for fast and large-scale visual monitoring of bee hives, International Conference on Computer Vision, Seoul, Republic of Korea, pp. 1–8.
Meitalovs, J., Histjajevs, A. and Stalidzans, E. (2009). Automatic microclimate controlled beehive observation system, 8th International Scientific Conference ‘Enginieering for Rural Development’, Jelgava, Latvia, pp. 265–271.
Mielnik, P., Fojcik, M., Tokarz, K., Rodak, Z. and Pollen, B. (2021). Detecting of minimal changes in physical activity using one accelerometer sensor, in K. Wojtkiewicz et al. (Eds), Advances in Computational Collective Intelligence, Springer International Publishing, Cham, pp. 498–508.10.1007/978-3-030-88113-9_40
Mielnik, P., Tokarz, K., Mrozek, D., Czekalski, P., Fojcik, M., Hjelle, A.M. and Milik, M. (2019). Monitoring of chronic arthritis patients with wearables—Report from the concept phase, in N.T. Nguyen et al. (Eds), Computational Collective Intelligence, Springer International Publishing, Cham, pp. 229–238.10.1007/978-3-030-28374-2_20
Mrozek, D., Milik, M., Małysiak-Mrozek, B., Tokarz, K., Duszenko, A. and Kozielski, S. (2020a). Fuzzy intelligence in monitoring older adults with wearables, in V.V. Krzhizhanovskaya et al. (Eds), Computational Science— ICCS 2020, Springer International Publishing, Cham, pp. 288–301.10.1007/978-3-030-50426-7_22
Mrozek, D., Tokarz, K., Pankowski, D. and Małysiak-Mrozek, B. (2020b). A hopping umbrella for fuzzy joining data streams from IoT devices in the cloud and on the edge, IEEE Transactions on Fuzzy Systems28(5): 916–928.10.1109/TFUZZ.2019.2955056
Nazir, D., Fizza, M., Waseem, A. and Khan, S. (2018). Vehicle detection on embedded single board computers, 2018 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, pp. 480–485.
Ochoa, I.Z., Gutierrez, S. and Rodríguez, F. (2019). Internet of things: Low cost monitoring beehive system using wireless sensor network, 2019 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Mexico, Vol. I, pp. 1–7.
Pierleoni, P., Concetti, R., Belli, A. and Palma, L. (2020). Amazon, Google and Microsoft solutions for IoT: Architectures and a performance comparison, IEEE Access8: 5455–5470.10.1109/ACCESS.2019.2961511
Qandour, A., Ahmad, I., Habibi, D. and Leppard, M. (2014). Remote beehive monitoring using acoustic signals, Acoustics Australia/Australian Acoustical Society42(3): 204–209.
Rodak, Z., Tokarz, K., Mielnik, P. and Fojcik, M. (2022). Simultaneous measurements reading from more than one Mi Band 3 wristbands, in A.K. Nagar et al. (Eds), Intelligent Sustainable Systems, Springer Singapore, Singapore, pp. 93–101.
Rustia, D.J., Ngo, N. and Lin, T.-T. (2016). An IoT-based information system for honeybee in and out activity with beehive environmental condition monitoring, Conference on Bio-Mechatronics and Agricultural Machinery Engineering, Niigata, Japan, pp. 1–2.
Schneider, P. and Drescher, W. (1987). Einfluss der parasitierung durch die milbe varroa jacobsoni oud. auf das schlupfgewicht, die gewichtsentwicklung, die entwicklung der hypopharynxdrüsen und die lebensdauer von Apis mellifera l, Apidologie18(1): 101–110.
Schurischuster, S., Remeseiro, B., Radeva, P. and Kampel, M. (2018). A preliminary study of image analysis for parasite detection on honey bees, in A. Campilho et al. (Eds), Image Analysis and Recognition. ICIAR 2018, Lecture Notes in Computer Science, Vol. 10882, Springer, Cham, pp. 465–473.10.1007/978-3-319-93000-8_52
Schurischuster, S., Zambanini, S. and Kampel, M. (2016). Sensor study for monitoring varroa mites on honey bees (Apis mellifera), Visual Observation and Analysis of Vertebrate and Insect Behavior Workshop, Cancun, Mexico, pp. 1–4.
Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.
Szczurek, A., Maciejewska, M., Wilk, J., Wilde, J. and Siuda, M. (2019). Detection of honeybee disease: Varrosis using a semiconductor gas sensor array, 8th International Conference on Sensor Networks, Prague, Czech Republic, pp. 58–66.
Szczurek, A., Maciejewska, M., Zajiczek, Z., Wilk, J., Wilde, J. and Siuda, M. (2020). The effectiveness of Varroa destructor infestation classification using an e-nose depending on the time of day, Sensors20(9): 2532.10.3390/s20092532724877432365639
Süzen, A.A., Duman, B. and Şen, B. (2020). Benchmark analysis of jetson TX2, Jetson Nano and Raspberry Pi using deep-CNN, 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, pp. 1–5.
van der Sluijs, J.P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J.-M. and Belzunces, L.P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services, Current Opinion in Environmental Sustainability5(3): 293–305.10.1016/j.cosust.2013.05.007
Van Goethem, S., Verwulgen, S., Goethijn, F. and Steckel, J. (2019). An IoT solution for measuring bee pollination efficacy, 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, pp. 837–841.
vanEngelsdorp, D., Traynor, K.S., Andree, M., Lichtenberg, E.M., Chen, Y., Saegerman, C. and Cox-Foster, D.L. (2017). Colony collapse disorder (CCD) and bee age impact honey bee pathophysiology, PLOS ONE12(7): 1–23.10.1371/journal.pone.0179535551341528715431
vanEngelsdorp, D., Underwood, R., Caron, D. and Hayes, J. (2007). An estimate of managed colony losses in the winter of 2006–2007: A report commissioned by the apiary inspectors of America, American Bee Journal147(7): 599–603.
Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski, M. (2021). Analysis of safeness in a Petri net-based specification of the control part of cyber-physical systems, International Journal of Applied Mathematics and Computer Science31(4): 647–657, DOI: 10.34768/amcs-2021-0045.
Zabasta, A., Zhiravetska, A., Kunicina, N. and Kondratjevs, K. (2019). Technical implementation of IoT concept for bee colony monitoring, 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1–4.
Zacepins, A., Kviesis, A., Pecka, A. and Osadcuks, V. (2017a). Development of Internet of things concept for precision beekeeping, 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, pp. 23–27.10.1109/CarpathianCC.2017.7970365
Zacepins, A., Pecka, A., Osadcuks, V., Kviesis, A. and Engel, S. (2017b). Solution for automated bee colony weight monitoring, Agronomy Research15(2): 585–593.
Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction, Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, Vol. 2, pp. 28–31.
Zivkovic, Z. and van der Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the task of background subtraction, Pattern Recognition Letters27(7): 773–780.10.1016/j.patrec.2005.11.005
Zogovic, N., Mladenovic, M. and Rašić, S. (2017). From primitive to cyber-physical beekeeping, 7th International Conference on Information Society and Technology, Kopaonik, Serbia, Vol. 1, pp. 38–43.