Have a personal or library account? Click to login
Bootstrap Methods for Epistemic Fuzzy Data Cover

References

  1. Ban, A., Coroianu, L. and Grzegorzewski, P. (2015). Fuzzy Numbers: Approximations, Ranking and Applications, Polish Academy of Sciences, Warsaw.
  2. Casella, G. (2003). Introduction to the silver anniversary of the bootstrap, Statistical Science 18(2): 133–134.10.1214/ss/1063994967
  3. Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems 10(3): 384–390.10.1109/TFUZZ.2002.1006441
  4. Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning 55(7): 1502–1518.
  5. Couso, I. and Sánchez, L. (2011). Inner and outer fuzzy approximations of confidence intervals, Fuzzy Sets and Systems 184(1): 68–83.10.1016/j.fss.2010.11.004
  6. Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.10.1017/CBO9780511802843
  7. De Angelis, D. and Young, G.A. (1992). Smoothing the bootstrap, International Statistical Review 60(1): 45–56.10.2307/1403500
  8. Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems 183(1): 72–91.10.1016/j.fss.2011.05.022
  9. Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals of Statistics 7(1): 1–26.10.1214/aos/1176344552
  10. Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W. and Ginzburg, L. (2007). Experimental uncertainty estimation and statistics for data having interval uncertainty, Technical Report SAND2007-0939, Applied Biomathematics, New York.10.2172/910198
  11. Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis 51(1): 148–162.10.1016/j.csda.2006.04.018
  12. Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures, Annals of Probability 18(2): 851–869.10.1214/aop/1176990862
  13. González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems 157(19): 2608–2613.10.1016/j.fss.2003.11.021
  14. Grzegorzewski, P. (2000). Testing statistical hypotheses with vague data, Fuzzy Sets and Systems 112(3): 501–510.10.1016/S0165-0114(98)00061-X
  15. Grzegorzewski, P. (2001). Fuzzy tests—defuzzification and randomization, Fuzzy Sets and Systems 118(3): 437–446.10.1016/S0165-0114(98)00462-X
  16. Grzegorzewski, P. and Goławska, J. (2021). In search of a precise estimator based on imprecise data, Joint Proceedings of the IFSA-EUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 530–537.
  17. Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of Applied Mathematics and Computer Science 12(3): 337–345.
  18. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497.
  19. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020a). Flexible bootstrap for fuzzy data based on the canonical representation, International Journal of Computational Intelligence Systems 13(1): 1650–1662.10.2991/ijcis.d.201012.003
  20. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020b). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
  21. Grzegorzewski, P. and Romaniuk, M. (2021). Epistemic bootstrap for fuzzy data, Joint Proceedings of the IFSAEUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 538–545.
  22. Hall, P., DiCiccio, T. and Romano, J. (1989). On smoothing and the bootstrap, Annals of Statistics 17(2): 692–704.10.1214/aos/1176347135
  23. Hukuhara, M. (1967). Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj 10: 205–223.
  24. Kołacz, A. and Grzegorzewski, P. (2019). Asymptotic algorithm for computing the sample variance of interval data, Iranian Journal of Fuzzy Systems 16(4): 83–96.
  25. Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook of Monte Carlo Methods, Wiley, Hoboken.10.1002/9781118014967
  26. Kruse, R. (1982). The strong law of large numbers for fuzzy random variables, Information Sciences 28(3): 233–241.10.1016/0020-0255(82)90049-4
  27. Kwakernaak, H. (1978). Fuzzy random variables, Part I: Definitions and theorems, Information Sciences 15(1): 1–15.10.1016/0020-0255(78)90019-1
  28. Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research 251(3): 918–929.10.1016/j.ejor.2015.11.016
  29. Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning 88: 128–147.10.1016/j.ijar.2017.05.007
  30. Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59: 31–49.10.1007/s001840300270
  31. Nguyen, H., Kreinovich, V., Wu, B. and Xiang, G. (2012). Computing Statistics under Interval and Fuzzy Uncertainty, Springer, Berlin/Heidelberg.10.1007/978-3-642-24905-1_12
  32. Parchami, A. (2018). EM algorithm for maximum likelihood estimation by non-precise information, https://cran.r-project.org/package=EM.Fuzzy.
  33. Pedrycz, W. (1994). Why triangular membership functions?, Fuzzy Sets and Systems 64(1): 21–30.10.1016/0165-0114(94)90003-5
  34. Piegat, A. (2005). A new definition of the fuzzy set, International Journal of Applied Mathematics and Computer Science 15(1): 125–140.
  35. Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Berlin/Heidelberg, pp. 127–147.10.1007/978-3-030-03201-2_8
  36. Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences 372: 591–607.10.1016/j.ins.2016.08.068
  37. Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis 56(4): 956–966.10.1016/j.csda.2010.11.025
  38. Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33
  39. Romaniuk, M. and Hryniewicz, O. (2019). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing 23: 5883–5903.10.1007/s00500-018-3251-5
  40. Romaniuk, M. and Hryniewicz, O. (2021). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems 29(3): 599–611.10.1109/TFUZZ.2019.2957253
  41. Sevinc, B., Cetintav, B., Esemen, M. and Gurler, S. (2019). RSSampling: A pioneering package for ranked set sampling, The R Journal 11(1): 401–415.10.32614/RJ-2019-039
  42. Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap, Springer, New York.10.1007/978-1-4612-0795-5
  43. Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth?, Biometrika 74(3): 469–479.10.1093/biomet/74.3.469
  44. Suresh, H. and Guttag, J.V. (2021). A framework for understanding sources of harm throughout the machine learning life cycle, Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), New York, USA.10.1145/3465416.3483305
  45. Vavasis, S.A. (1991). Nonlinear Optimization: Complexity Issues, Oxford University Press, New York.
  46. Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science 25(2): 389–401, DOI: 10.1515/amcs-2015-0030.
  47. Wolfe, D.A. (2004). Ranked set sampling: An approach to more efficient data collection, Statistical Science 19(4): 636–643.10.1214/088342304000000369
  48. Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics SMC-3(1): 28–44.10.1109/TSMC.1973.5408575
DOI: https://doi.org/10.34768/amcs-2022-0021 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 285 - 297
Submitted on: Oct 18, 2021
Accepted on: Apr 20, 2022
Published on: Jul 4, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Przemysław Grzegorzewski, Maciej Romaniuk, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.