Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems 10(3): 384–390.10.1109/TFUZZ.2002.1006441
Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning 55(7): 1502–1518.
Couso, I. and Sánchez, L. (2011). Inner and outer fuzzy approximations of confidence intervals, Fuzzy Sets and Systems 184(1): 68–83.10.1016/j.fss.2010.11.004
Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems 183(1): 72–91.10.1016/j.fss.2011.05.022
Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W. and Ginzburg, L. (2007). Experimental uncertainty estimation and statistics for data having interval uncertainty, Technical Report SAND2007-0939, Applied Biomathematics, New York.10.2172/910198
Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis 51(1): 148–162.10.1016/j.csda.2006.04.018
González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems 157(19): 2608–2613.10.1016/j.fss.2003.11.021
Grzegorzewski, P. and Goławska, J. (2021). In search of a precise estimator based on imprecise data, Joint Proceedings of the IFSA-EUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 530–537.
Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of Applied Mathematics and Computer Science 12(3): 337–345.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020a). Flexible bootstrap for fuzzy data based on the canonical representation, International Journal of Computational Intelligence Systems 13(1): 1650–1662.10.2991/ijcis.d.201012.003
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020b). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
Grzegorzewski, P. and Romaniuk, M. (2021). Epistemic bootstrap for fuzzy data, Joint Proceedings of the IFSAEUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 538–545.
Kołacz, A. and Grzegorzewski, P. (2019). Asymptotic algorithm for computing the sample variance of interval data, Iranian Journal of Fuzzy Systems 16(4): 83–96.
Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research 251(3): 918–929.10.1016/j.ejor.2015.11.016
Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning 88: 128–147.10.1016/j.ijar.2017.05.007
Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59: 31–49.10.1007/s001840300270
Nguyen, H., Kreinovich, V., Wu, B. and Xiang, G. (2012). Computing Statistics under Interval and Fuzzy Uncertainty, Springer, Berlin/Heidelberg.10.1007/978-3-642-24905-1_12
Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Berlin/Heidelberg, pp. 127–147.10.1007/978-3-030-03201-2_8
Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences 372: 591–607.10.1016/j.ins.2016.08.068
Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis 56(4): 956–966.10.1016/j.csda.2010.11.025
Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33
Romaniuk, M. and Hryniewicz, O. (2019). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing 23: 5883–5903.10.1007/s00500-018-3251-5
Romaniuk, M. and Hryniewicz, O. (2021). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems 29(3): 599–611.10.1109/TFUZZ.2019.2957253
Sevinc, B., Cetintav, B., Esemen, M. and Gurler, S. (2019). RSSampling: A pioneering package for ranked set sampling, The R Journal 11(1): 401–415.10.32614/RJ-2019-039
Suresh, H. and Guttag, J.V. (2021). A framework for understanding sources of harm throughout the machine learning life cycle, Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), New York, USA.10.1145/3465416.3483305
Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science 25(2): 389–401, DOI: 10.1515/amcs-2015-0030.
Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics SMC-3(1): 28–44.10.1109/TSMC.1973.5408575