Have a personal or library account? Click to login

References

  1. Abbas, H.S., Tóth, R., Petreczky, M., Meskin, N. and Mohammadpour, J. (2014). Embedding of nonlinear systems in a linear parameter-varying representation, IFAC Proceedings Volumes 47(3): 6907–6913.10.3182/20140824-6-ZA-1003.02506
  2. Alkhoury, Z., Petreczky, M. and Mercère, G. (2017). Identifiability of affine linear parameter-varying models, Automatica 80: 62–74.10.1016/j.automatica.2017.01.029
  3. Anaya, J.Z. and Henrion, D. (2009). An improved Toeplitz algorithm for polynomial matrix null-space computation, Applied Mathematics and Computation 207(1): 256–272.10.1016/j.amc.2008.10.037
  4. Anguelova, M. (2007). Observability and Identifiability of Nonlinear Systems with Applications in Biology, PhD thesis, Chalmers University of Technology, Gothenburg.
  5. Anstett, F. (2006). Les systèmes dynamiques chaotiques pour le chiffrement: Synthèse et cryptanalyse, PhD thesis, Université Henri Poincaré-Nancy I, Nancy.
  6. Anstett, F., Bloch, G., Millérioux, G. and Denis-Vidal, L. (2008). Identifiability of discrete-time nonlinear systems: The local state isomorphism approach, Automatica 44(11): 2884–2889.10.1016/j.automatica.2008.03.019
  7. Anstett, F., Millérioux, G. and Bloch, G. (2006). Chaotic cryptosystems: Cryptanalysis and identifiability, IEEE Transactions on Circuits and Systems I: Regular Papers 53(12): 2673–2680.10.1109/TCSI.2006.885979
  8. Audoly, S., Bellu, G., D’Angiò, L., Saccomani, M.P. and Cobelli, C. (2001). Global identifiability of nonlinear models of biological systems, IEEE Transactions on Biomedical Engineering 48(1): 55–65.10.1109/10.900248
  9. Balsa-Canto, E., Alonso, A.A. and Banga, J.R. (2010). An iterative identification procedure for dynamic modeling of biochemical networks, BMC Systems Biology 4: 11.10.1186/1752-0509-4-11
  10. Beelen, H. and Donkers, T. (2017). Joint state and parameter estimation for discrete-time polytopic linear parameter-varying systems, IFAC-PapersOnLine 50(1): 9778–9783.10.1016/j.ifacol.2017.08.880
  11. Bellman, R. and Aström, K. J. (1970). On structural identifiability, Mathematical Biosciences 7(3): 329–339.10.1016/0025-5564(70)90132-X
  12. Bellu, G., Saccomani, M.P., Audoly, S. and D’Angiò, L. (2007). Daisy: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine 88(1): 52–61.10.1016/j.cmpb.2007.07.002288853717707944
  13. Buchberger, B. (2006). Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Journal of Symbolic Computation 41(3–4): 475–511.10.1016/j.jsc.2005.09.007
  14. Chis, O.-T., Banga, J.R. and Balsa-Canto, E. (2011). Structural identifiability of systems biology models: A critical comparison of methods, PLOS ONE 6(11): e27755.10.1371/journal.pone.0027755
  15. Chow, E. and Willsky, A. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control 29(7): 603–614.10.1109/TAC.1984.1103593
  16. Coll, C. and Sánchez, E. (2019). Parameter identification and estimation for stage-structured population models, International Journal of Applied Mathematics and Computer Science 29(2): 327–336, DOI: 10.2478/amcs-2019-0024.
  17. Dankers, A., Tóth, R., Heuberger, P. S., Bombois, X. and Van den Hof, P.M. (2011). Informative data and identifiability in LPV-ARX prediction-error identification, 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, USA, pp. 799–804.
  18. Denis-Vidal, L. and Joly-Blanchard, G. (1996). Identifiability of some nonlinear kinetics, 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, pp. 1–8.
  19. Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (1999). Some results and applications about identifiability of non-linear systems, European Control Conference, ECC 1999, Karl-sruhe, Germany, pp. 1232–1237.
  20. Glover, K. and Willems, J. (1974). Parametrizations of linear dynamical systems: Canonical forms and identifiability, IEEE Transactions on Automatic Control 19(6): 640–646.10.1109/TAC.1974.1100711
  21. Joly-Blanchard, G. and Denis-Vidal, L. (1998). Some remarks about an identifiability result of nonlinear systems, Auto-matica 34(9): 1151–1152.10.1016/S0005-1098(98)00055-7
  22. Joubert, D. (2020). Structural Identifiability of Large Systems Biology Models, PhD thesis, Wageningen University, Wageningen.
  23. Khare, S.R., Pillai, H.K. and Belur, M.N. (2010). Algorithm to compute minimal nullspace basis of a polynomial matrix, 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, Hungary, pp. 219–224.
  24. Kwiatkowski, A., Boll, M.-T. and Werner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, CDC 2006, San Diego, USA, pp. 6690–6695.
  25. Lee, L.H. and Poolla, K. (1997). Identifiability issues for parameter-varying and multidimensional linear systems, ASME 1997 Design Engineering Technical Conferences, Sacramento, USA.10.1115/DETC97/VIB-4240
  26. Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265–276.10.1016/0005-1098(94)90029-9
  27. Nômm, S. and Moog, C. (2004). Identifiability of discrete-time nonlinear systems, IFAC Proceedings Volumes 37(13): 333–338.10.1016/S1474-6670(17)31245-4
  28. Němcová, J. (2010). Structural identifiability of polynomial and rational systems, Mathematical Biosciences 223(2): 83–96.10.1016/j.mbs.2009.11.00219913563
  29. Nijmeijer, H. and Van der Schaft, A. (1990). Nonlinear Dynamical Control Systems, Springer, New York.10.1007/978-1-4757-2101-0
  30. Ohtake, H., Tanaka, K. and Wang, H.O. (2003). Fuzzy modeling via sector nonlinearity concept, Integrated Computer-Aided Engineering 10(4): 333–341.10.3233/ICA-2003-10404
  31. Ollivier, F. (1990). Le problème de l’identifiabilité structurelle globale: Approche théorique, méthodes effectives et bornes de complexité, PhD thesis, Ecole Polytechnique, Palaiseau.
  32. Peeters, R.L. and Hanzon, B. (2005). Identifiability of homogeneous systems using the state isomorphism approach, Automatica 41(3): 513–529.10.1016/j.automatica.2004.11.019
  33. Petreczky, M. and Mercère, G. (2012). Affine LPV systems: Realization theory, input-output equations and relationship with linear switched systems, 51st Annual Conference on Decision and Control, CDC 2012, Maui, USA, pp. 4511–4516.
  34. Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1–2): 21–33.10.1016/0025-5564(78)90063-9
  35. Saccomani, M.P. (2011). An effective automatic procedure for testing parameter identifiability of HIV/AIDS models, Bulletin of Mathematical Biology 73(8): 1734–1753.10.1007/s11538-010-9588-2
  36. Saccomani, M.P., Audoly, S., Bellu, G., Cobelli, C. (1997). Global identifiability of nonlinear model parameters, IFAC Proceedings Volumes 30(11): 233–238.10.1016/S1474-6670(17)42852-7
  37. Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C. (2016). Takagi–Sugeno model based nonlinear parameter estimation in air handling units, 4th IFAC International Conference on Intelligent Control and Automation Sciences, ICONS 2016, Reims, France, pp. 188–193.
  38. Tunali, E. T. and Tarn, T.-J. (1987). New results for identifiability of nonlinear systems, IEEE Transactions on Automatic Control 32(2): 146–154.10.1109/TAC.1987.1104544
  39. Vajda, S. and Rabitz, H. (1989). State isomorphism approach to global identifiability of nonlinear systems, IEEE Transactions on Automatic Control 34(2): 220–223.10.1109/9.21105
  40. Verdière, N., Denis-Vidal, L., Joly-Blanchard, G. and Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor, International Journal of Applied Mathematics and Computer Science 15(4): 517–526.
  41. Villaverde, A.F. and Banga, J.R. (2017). Structural properties of dynamic systems biology models: Identifiability, reachability, and initial conditions, Processes 5(2): 29.10.3390/pr5020029
  42. Villaverde, A.F., Barreiro, A. and Papachristodoulou, A. (2016). Structural identifiability of dynamic systems biology models, PLOS Computational Biology 12(10): e1005153.10.1371/journal.pcbi.1005153508525027792726
  43. Walter, E. and Lecourtier, Y. (1982). Global approaches to identifiability testing for linear and nonlinear state space models, Mathematics and Computers in Simulation 24(6): 472–482.10.1016/0378-4754(82)90645-0
  44. Xia, X. and Moog, C.H. (2003). Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE Transactions on Automatic Control 48(2): 330–336.10.1109/TAC.2002.808494
DOI: https://doi.org/10.34768/amcs-2022-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 255 - 269
Submitted on: May 13, 2021
Accepted on: Feb 2, 2022
Published on: Jul 4, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Krishnan Srinivasarengan, José Ragot, Christophe Aubrun, Didier Maquin, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.