Have a personal or library account? Click to login

A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses

Open Access
|Jul 2022

References

  1. Alouani, A., Rice, T. and Blair, W. (1992). A two-stage filter for state estimation in the presence of dynamical stochastic bias, American Control Conference, Chicago, USA, pp. 1784–1788.
  2. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. and Schröder, J. (2006). Diagnosis and Fault-Tolerant Control, Vol. 2, Springer, Berlin.
  3. Censi, A. (2010). Kalman filtering with intermittent observations: Convergence for semi-Markov chains and an intrinsic performance measure, IEEE Transactions on Automatic Control 56(2): 376–381.10.1109/TAC.2010.2097350
  4. Chabir, K., Rhouma, T., Keller, J.Y. and Sauter, D. (2018). State filtering for networked control systems subject to switching disturbances, International Journal of Applied Mathematics and Computer Science 28(3): 473–482, DOI: 10.2478/amcs-2018-0036.
  5. Chang, Y. H., Hu, Q. and Tomlin, C.J. (2018). Secure estimation based Kalman filter for cyber-physical systems against sensor attacks, Automatica 95(14): 399–412.10.1016/j.automatica.2018.06.010
  6. Chen, J. and Patton, R.J. (1996). Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances, IEE Proceedings—Control Theory and Applications 143(1): 31–36.10.1049/ip-cta:19960059
  7. Dán, G. and Sandberg, H. (2010). Stealth attacks and protection schemes for state estimators in power systems, 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, USA, pp. 214–219.
  8. Darouach, M. and Zasadzinski, M. (1997). Unbiased minimum variance estimation for systems with unknown exogenous inputs, Automatica 33(4): 717–719.10.1016/S0005-1098(96)00217-8
  9. Darouach, M., Zasadzinski, M. and Keller, J.Y. (1992). State estimation for discrete systems with unknown inputs using state estimation of singular systems, American Control Conference, Chicago, USA, pp. 3014–3015.
  10. De Sá, A.O., da Costa Carmo, L.F.R. and Machado, R.C. (2017). Covert attacks in cyber-physical control systems, IEEE Transactions on Industrial Informatics 13(4): 1641–1651.10.1109/TII.2017.2676005
  11. Ding, B. and Fang, H. (2018). Fault estimation and prediction for nonlinear stochastic system with intermittent observations, International Journal of Robust and Nonlinear Control 28(4): 1165–1181.10.1002/rnc.3925
  12. Fang, H., Shi, Y. and Yi, J. (2011). On stable simultaneous input and state estimation for discrete-time linear systems, International Journal of Adaptive Control and Signal Processing 25(8): 671–686.10.1002/acs.1230
  13. Fletcher, A.K., Rangan, S. and Goyal, V.K. (2004). Estimation from lossy sensor data: Jump linear modeling and Kalman filtering, 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, USA, pp. 251–258.
  14. Friedland, B. (1969). Treatment of bias in recursive filtering, IEEE Transactions on Automatic Control 14(4): 359–367.10.1109/TAC.1969.1099223
  15. Gillijns, S. and De Moor, B. (2007). Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica 43(5): 934–937.10.1016/j.automatica.2006.11.016
  16. Hespanha, J.P., Naghshtabrizi, P. and Xu, Y. (2007). A survey of recent results in networked control systems, Proceedings of the IEEE 95(1): 138–162.10.1109/JPROC.2006.887288
  17. Hmida, F.B., Khemiri, K., Ragot, J. and Gossa, M. (2010). Robust filtering for state and fault estimation of linear stochastic systems with unknown disturbance, Mathematical Problems in Engineering 2010, Article ID: 591639.10.1155/2010/591639
  18. Hou, M. and Patton, R.J. (1998). Optimal filtering for systems with unknown inputs, IEEE Transactions on Automatic Control 43(3): 445–449.10.1109/9.661621
  19. Hsieh, C.-S. and Chen, F.-C. (1999). Optimal solution of the two-stage Kalman estimator, IEEE Transactions on Automatic Control 44(1): 194–199.10.1109/9.739135
  20. Huang, H., Ahmed, N. and Karthik, P. (2011). On a new type of denial of service attack in wireless networks: The distributed jammer network, IEEE Transactions on Wireless Communications 10(7): 2316–2324.10.1109/TWC.2011.052311.101613
  21. Huang, M. and Dey, S. (2007). Stability of Kalman filtering with Markovian packet losses, Automatica 43(4): 598–607.10.1016/j.automatica.2006.10.023
  22. Ignagni, M. (2000). Optimal and suboptimal separate-bias Kalman estimators for a stochastic bias, IEEE Transactions on Automatic Control 45(3): 547–551.10.1109/9.847741
  23. Jie, S., Guoqing, Q., Yinya, L. and Andong, S. (2018). Stochastic convergence analysis of cubature Kalman filter with intermittent observations, Journal of Systems Engineering and Electronics 29(4): 823–833.10.21629/JSEE.2018.04.17
  24. Kailath, T., Sayed, A.H. and Hassibi, B. (2000). Linear Estimation, Prentice Hall, Englewood Cliffs.
  25. Kalman, R.E. (1960). A new approach to linear filtering and prediction problems, ASME Journal of Basic Engineering 82(1): 23–45.10.1115/1.3662552
  26. Keller, J.Y. and Darouach, M. (1997). Optimal two-stage Kalman filter in the presence of random bias, Automatica 33(9): 1745–1748.10.1016/S0005-1098(97)00088-5
  27. Keller, J.Y. and Sauter, D. (2013). Kalman filter for discrete-time stochastic linear systems subject to intermittent unknown inputs, IEEE Transactions on Automatic Control 58(7): 1882–1887.10.1109/TAC.2013.2264739
  28. Kim, K.H., Lee, J.G. and Park, C.G. (2006). Adaptive two-stage kalman filter in the presence of unknown random bias, International Journal of Adaptive Control and Signal Processing 20(7): 305–319.10.1002/acs.900
  29. Kitanidis, P.K. (1987). Unbiased minimum-variance linear state estimation, Automatica 23(6): 775–778.10.1016/0005-1098(87)90037-9
  30. Li, W., Jia, Y. and Du, J. (2015). Distributed Kalman consensus filter with intermittent observations, Journal of the Franklin Institute 352(9): 3764–3781.10.1016/j.jfranklin.2015.01.002
  31. Liang, J., Sankar, L. and Kosut, O. (2015). Vulnerability analysis and consequences of false data injection attack on power system state estimation, IEEE Transactions on Power Systems 31(5): 3864–3872.10.1109/TPWRS.2015.2504950
  32. Nosrati, K. and Shafiee, M. (2018). Kalman filtering for discrete-time linear fractional-order singular systems, IET Control Theory & Applications 12(9): 1254–1266.10.1049/iet-cta.2017.0898
  33. Rhouma, T., Chabir, K. and Abdelkrim, M.N. (2018). Resilient control for networked control systems subject to cyber/physical attacks, International Journal of Automation and Computing 15(3): 345–354.10.1007/s11633-017-1059-x
  34. Rhouma, T., Keller, J.Y., Sauter, D., Chabir, K. and Abdelkrim, M. (2015). Active GLR detector for resilient LQG controller in networked control systems, IFACPapersOnLine 48(21): 754–759.10.1016/j.ifacol.2015.09.617
  35. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K. and Sastry, S.S. (2007). Foundations of control and estimation over lossy networks, Proceedings of the IEEE 95(1): 163–187.10.1109/JPROC.2006.887306
  36. Shi, L., Xie, L. and Murray, R.M. (2009). Kalman filtering over a packet-delaying network: A probabilistic approach, Automatica 45(9): 2134–2140.10.1016/j.automatica.2009.05.018
  37. Simon, D. (2006). Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, Wiley, Hoboken.10.1002/0470045345
  38. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I. and Sastry, S.S. (2004). Kalman filtering with intermittent observations, IEEE Transactions on Automatic Control 49(9): 1453–1464.10.1109/TAC.2004.834121
  39. Sumithra, S. and Vadivel, R. (2021). An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network, International Journal of Applied Mathematics and Computer Science 31(1): 45–57, DOI: 10.34768/amcs-2021-0004.
  40. Sun, S. and Ma, J. (2014). Linear estimation for networked control systems with random transmission delays and packet dropouts, Information Sciences 269(2014): 349–365.10.1016/j.ins.2013.12.055
  41. Tran, T.A., Jauberthie, C., Travé-Massuyès, L. and Lu, Q.H. (2021). An interval Kalman filter enhanced by lowering the covariance matrix upper bound, International Journal of Applied Mathematics and Computer Science 31(2): 259–269, DOI: 10.34768/amcs-2021-0018.
  42. Varshney, D., Bhushan, M. and Patwardhan, S.C. (2019). State and parameter estimation using extended Kitanidis Kalman filter, Journal of Process Control 76(2019): 98–111.10.1016/j.jprocont.2018.11.007
  43. Wang, H., Tan, S., Zhu, Y. and Li, M. (2020). Deterministic scheduling with optimization of average transmission delays in industrial wireless sensor networks, IEEE Access 8: 18852–18862.10.1109/ACCESS.2020.2968491
  44. Wang, Q. and Yang, H. (2019). A survey on the recent development of securing the networked control systems, Systems Science & Control Engineering 7(1): 54–64.10.1080/21642583.2019.1566800
  45. Yuan, Y. and Sun, F. (2015). Data fusion-based resilient control system under DoS attacks: A game theoretic approach, International Journal of Control, Automation and Systems 13(3): 513–520.10.1007/s12555-014-0316-9
  46. Yuan, Y., Wang, Z. and Guo, L. (2017). Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: The noncooperative case, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(11): 1885–1896.10.1109/TSMC.2017.2704278
  47. Zhang, D., Shi, P., Wang, Q.-G. and Yu, L. (2017). Analysis and synthesis of networked control systems: A survey of recent advances and challenges, ISA Transactions 66(1): 376–392.10.1016/j.isatra.2016.09.02627773381
  48. Zhang, H., Song, X. and Shi, L. (2012). Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping, IEEE Transactions on Automatic Control 57(5): 1248–1253.10.1109/TAC.2012.2191857
  49. Zhang, X. and Ding, F. (2020). Adaptive parameter estimation for a general dynamical system with unknown states, International Journal of Robust and Nonlinear Control 30(4): 1351–1372.10.1002/rnc.4819
  50. Zhu, M. and Martinez, S. (2013). On the performance analysis of resilient networked control systems under replay attacks, IEEE Transactions on Automatic Control 59(3): 804–808.10.1109/TAC.2013.2279896
DOI: https://doi.org/10.34768/amcs-2022-0018 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 241 - 253
Submitted on: Dec 29, 2021
Accepted on: Apr 9, 2022
Published on: Jul 4, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Taouba Rhouma, Jean-Yves Keller, Mohamed Naceur Abdelkrim, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.