Have a personal or library account? Click to login
Reliability–Aware Zonotopic Tube–Based Model Predictive Control of a Drinking Water Network Cover

Reliability–Aware Zonotopic Tube–Based Model Predictive Control of a Drinking Water Network

Open Access
|Jul 2022

References

  1. Bemporad, A. and Morari, M. (2007). Robust Model Predictive Control: A Survey, Springer, London, pp. 207–226.
  2. Cai, B., Lui, Y., Lui, K. and Chang, Y. (2020). Bayesian Networks for Reliability Engineering, Springer, Singapore.
  3. Cembrano, G., Quevedo, J., Puig, V., Pérez, R., Figueras i Jové, J., Verdejo, J., Escaler, I., Ramón, G., Barnet, G., Rodríguez, P. and Casas, M. (2011). PLIO: A generic tool for real-time operational predictive optimal control of water networks, Water Science and Technology: A Journal of the International Association on Water Pollution Research 64(2): 448–459.10.2166/wst.2011.43122097020
  4. Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y. and Weber, P. (2014). Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed, Reliability Engineering & System Safety 132: 196–206.10.1016/j.ress.2014.07.013
  5. Grosso, J., Ocampo-Martínez, C., Puig, V., Limon, D. and Pereira, M. (2014). Economic MPC for the management of drinking water networks, European Control Conference (ECC), Strasbourg, France, pp. 790–795.
  6. Grosso, J., Velarde Rueda, P., Ocampo-Martinez, C., Maestre, J. and Puig, V. (2016). Stochastic model predictive control approaches applied to drinking water networks, Optimal Control Applications and Methods 38(4): 541–558.10.1002/oca.2269
  7. Haghifam, M.-R. (2015). Application of Bayesian networks in composite power system reliability assessment and reliability-based analysis, IET Generation, Transmission & Distribution 9(13): 1755–1764.10.1049/iet-gtd.2014.0660
  8. Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin/Heidelberg.10.1007/3-540-30368-5
  9. Karimi Pour, F., Puig, V. and Cembrano, G. (2019). Economic health-aware LPV-MPC based on system reliability assessment for water transport network, Energies 12(15): 3015.10.3390/en12153015
  10. Khelassi, A., Theilliol, D. and Weber, P. (2010). Control design for over-actuated systems based on reliability indicators, UKACC International Conference on Control, Coventry, UK, pp. 1–6.
  11. Le, V., Stoica Maniu, C., Alamo, T., Camacho, E. and Dumur, D. (2013). Zonotopes: From Guaranteed State Estimation to Control, Wiley, Hoboken.10.1002/9781118761588
  12. Löfberg, J. (2003). Min-Max Approaches to Robust Model Predictive Control, PhD thesis, Linköping University, Linköping.
  13. Mayne, D., Seron, M. and Raković, S.V. (2005). Robust model predictive control of constrained linear system with bounded disturbances, Automatica 41(2): 219–224.10.1016/j.automatica.2004.08.019
  14. Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
  15. Müller, M., Angeli, D. and Allgöwer, F. (2013). Economic model predictive control with self-tuning terminal cost, European Journal of Control 19(5): 408–416.10.1016/j.ejcon.2013.05.019
  16. Philippe, W. and Lionel, J. (2006). Complex system reliability modelling with dynamic object oriented Bayesian networks, IET Generation, Transmission and Distribution 91(2): 149–162.10.1016/j.ress.2005.03.006
  17. Pour, F.K., Puig, V. and Cembrano, G. (2018). Health-aware LPV-MPC based on system reliability assessment for drinking water networks, IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, pp. 187–192.
  18. Puig, V., Escobet, T., Sarrate, R. and Quevedo, J. (2015). Fault diagnosis and fault tolerant control in critical infrastructure systems, in E. Kyriakides and M. Polycarpou (Eds), Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems, Studies in Computational Intelligence, Vol. 565, Springer, Berlin/Heidelberg.10.1007/978-3-662-44160-2_10
  19. Raković, S. V., Kerrigan, E., Kouramas, K. and Mayne, D. (2005). Invariant approximations of the minimal robust positively invariant set, IEEE Transactions on Automatic Control 50(3): 406–410.10.1109/TAC.2005.843854
  20. Rausand, M. and Hoyland, A. (2004). System Reliability Theory, 2nd Edn., Wiley, Hoboken.
  21. Ray, A. and Caplin, J. (2000). Life extending control of aircraft: Trade-off between flight performance and structural durability, The Aeronautical Journal 104(1039): 397–408.10.1017/S0001924000091843
  22. Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
  23. Salazar, J., Weber, P., Nejjari, F., Sarrate, R. and Theilliol, D. (2017). System reliability aware model predictive control framework, Reliability Engineering & System Safety 167(2): 663–672.10.1016/j.ress.2017.04.012
  24. Sanchez-Sardi, H., Escobet, T., Puig, V. and Odgaard, P. (2018). Health-aware model predictive control of wind turbines using fatigue prognosis, International Journal of Adaptive Control and Signal Processing 32(4): 614–627.10.1002/acs.2784
  25. Toro, R., Ocampo-Martínez, C., Logist, F., Impe, J.V. and Puig, V. (2011). Tuning of predictive controllers for drinking water networked systems, IFAC Proceedings Volumes 44(1): 14507–14512.10.3182/20110828-6-IT-1002.00415
  26. Velarde, P., Maestre, J.M., Ocampo-Martinez, C. and Bordons, C. (2016). Application of robust model predictive control to a renewable hydrogen-based microgrid, European Control Conference (ECC), Aalborg, Denmark, pp. 1209–1214.
  27. Wang, Y., Alamo, T., Puig, V. and Cembrano, G. (2018). Economic model predictive control with nonlinear constraint relaxation for the operational management of water distribution networks, Energies 11(4): 1–20.10.3390/en11040991
  28. Wang, Y., Puig, V. and Cembrano, G. (2017). Non-linear economic model predictive control of water distribution networks, Journal of Process Control 56: 23–34.10.1016/j.jprocont.2017.05.004
  29. Zagórowska, M., Wu, O., Ottewill, J., Reble, M. and Thornhill, N. (2020). A survey of models of degradation for control applications, Annual Reviews in Control 50: 150–173.10.1016/j.arcontrol.2020.08.002
  30. Zeller, M. and Montrone, F. (2018). Combination of component fault trees and Markov chains to analyze complex, software-controlled systems, 3rd International Conference on System Reliability and Safety (ICSRS), Barcelona, Spain, pp. 13–20.
DOI: https://doi.org/10.34768/amcs-2022-0015 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 197 - 211
Submitted on: Nov 14, 2021
Accepted on: May 10, 2022
Published on: Jul 4, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Boutrous Khoury, Fatiha Nejjari, Vicenç Puig, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.