Have a personal or library account? Click to login
A Multi–Source Fluid Queue Based Stochastic Model of the Probabilistic Offloading Strategy in a MEC System With Multiple Mobile Devices and a Single MEC Server
Anick, D., Mitra, D. and Sondhi, M. (1982). Stochastic theory of a data-handling system with multiple sources, Bell System Technical Journal61(8): 1871–1894.10.1002/j.1538-7305.1982.tb03089.x
Arunachalam, V., Gupta, V. and Dharmaraja, S. (2010). A fluid queue modulated by two independent birth-death processes, Computers and Mathematics with Applications60(8): 2433–2444.10.1016/j.camwa.2010.08.039
Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A. and Hanzo, L. (2020). Latency minimization for intelligent reflecting surface aided mobile edge computing, IEEE Journal on Selected Areas in Communications38(11): 2666–2682.10.1109/JSAC.2020.3007035
Bista, B., Wang, J. and Takata, T. (2020). Probabilistic computation offloading for mobile edge computing in dynamic network environment, Internet of Things11, Article no. 100225.
Cardellini, V., Personé, V., Valerio, V., Facchinei, F., Grassi, V., Presti, F. and Piccialli, V. (2016). A game-theoretic approach to computation offloading in mobile cloud computing, Mathematical Programming157(2): 421–449.10.1007/s10107-015-0881-6
El-Baz, A., Tarabia, A. and Darwiesh, A. (2020). Cloud storage facility as a fluid queue controlled by Markovian queue, Probability in the Engineering and Informational Sciences: 1–17, DOI: 10.1017/S0269964820000613.10.1017/S0269964820000613
Elwalid, A. and Mitra, D. (1995). Analysis, approximations and admission control of a multi-service multiplexing system with priorities, Proceedings of International Conference on Computer Communications, INFOCOM 1995, Boston, USA, pp. 463–472.
Fiedler, M. and Voos, H. (2000). New results on the numerical stability of the stochastic fluid flow model analysis, Proceedings of the Networking 2000 Conference, Paris, France, pp. 446–457.
Goścień, R. and Walkowiak, K. (2017). A column generation technique for routing and spectrum allocation in cloud-ready survivable elastic optical networks, International Journal of Applied Mathematics and Computer Science27(3): 591–603, DOI: 10.1515/amcs-2017-0042.10.1515/amcs-2017-0042
Hassan, M., Qi, W. and Chen, S. (2015). ELICIT: Efficiently identify computation-intensive tasks in mobile applications for offloading, Proceedings of IEEE International Conference on Networking, Architecture and Storage, NAS 2015, Boston, USA, pp. 12–22.
Kim, J. and Krunz, M. (2000). Bandwidth allocation in wireless networks with guaranteed packet-loss performance, Mathematical Programming8(3): 337–349.10.1109/90.851980
Lenin, R. and Parthasarathy, P. (2000). Fluid queues driven by an M/M/1/N queue, Mathematical Problems in Engineering6(5): 439–460.10.1155/S1024123X00001423
Li, K. (2019). How to stabilize a competitive mobile edge computing environment: A game theoretic approach, IEEE Access7: 69960–69985.10.1109/ACCESS.2019.2919106
Li, W. and Jin, S. (2021). Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity, Journal of Supercomputing77(11): 1286–12507, DOI: 10.1007/S11227-021-03781-W.10.1007/s11227-021-03781-w
Lim, W., Luong, N., Hoang, D., Jiao, Y., Liang, Y., Yang, Q., Niyato, D. and Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey, IEEE Communications Surveys and Tutorials22(3): 2031–2063.10.1109/COMST.2020.2986024
Liu, Y., Peng, M., Shou, G., Chen, Y. and Chen, S. (2020). Toward edge intelligence: Multi-access edge computing for 5G and internet of things, IEEE Internet of Things Journal7(8): 6722–6747.10.1109/JIOT.2020.3004500
Mao, B., wang, F. and Tian, N. (2012). Fluid model driven by an M/M/1 queue with multiple vacations and N-policy, Journal of Applied Mathematics and Computing38(1): 119–131.10.1007/s12190-010-0467-7
Mitra, D. (1988). Stochastic theory of a fluid model of producers and consumers coupled by a buffer, Advances in Applied Probability20(1): 646–676.10.2307/1427040
Mukherjee, M., Kumar, V., Kumar, S., Matamy, R., Mavromoustakis, C., Zhang, Q., Shojafar, M. and Mastorakis, G. (2020). Computation offloading strategy in heterogeneous fog computing with energy and delay constraints, Proceedings of IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, pp. 1–5.
Nouri, N., Abouei, J., Jaseemuddin, M. and Anpalagan, A. (2020). Joint access and resource allocation in ultradense mmWave NOMA networks with mobile edge computing, IEEE Internet of Things Journal7(2): 1531–1547.10.1109/JIOT.2019.2956409
Razaque, A., Aloqaily, M., Almiani, M., Jararweh, Y. and Srivastava, G. (2021). Efficient and reliable forensics using intelligent edge computing, Future Generation Computer Systems118: 230–239, DOI: 10.1016/j.future.2021.01.012.10.1016/j.future.2021.01.012
Sericola, B., Parthasarathy, P. and Vijayashree, K. (2005). Exact transient solution of an M/M/1 driven fluid queue, International Journal of Computer Mathematics82(6): 659–671.10.1080/00207160512331329041
Song, F., Ai, Z., Zhang, H., You, I. and Li, S. (2021). Smart collaborative balancing for dependable network components in cyber-physical systems, IEEE Transactions on Industrial Informatics17(10): 6916–6924.10.1109/TII.2020.3029766
Wu, H., Sun, Y. and Wolter, K. (2020). Energy-efficient decision making for mobile cloud offloading, IEEE Transactions on Cloud Computing8(2): 570–584.10.1109/TCC.2018.2789446
Xu, X., Shen, B., Ding, S., Srivstava, G., Bilal, M., Khosravi, M., Menon, V., Jan, M. and Wang, M. (2020). Service offloading with deep Q-network for digital twinning empowered internet of vehicles in edge computing, IEEE Transactions on Industrial Informatics18(2): 1414–1423, DOI: 10.1109/TII.2020.3040180.10.1109/TII.2020.3040180
Zeifman, A., Razumchik, R., Satin, Y., Kiseleva, K., Korotysheva, A. and Korolev, V. (2018). Bounds on the rate of convergence for one class of inhomogeneous Markovian queueing models with possible batch arrivals and services, International Journal of Applied Mathematics and Computer Science28(1): 141–154, DOI: 10.2478/amcs-2018-0011.10.2478/amcs-2018-0011
Zeifman, A., Satin, Y., Kryukova, A., Razumchik, R., Kiseleva, K. and Shilova, G. (2020). On three methods for bounding the rate of convergence for some continuous-time Markov chains, International Journal of Applied Mathematics and Computer Science30(2): 251–266, DOI: 10.34768/amcs-2020-0020.
Zhao, T., Zhou, S., Guo, X. and Niu, Z. (2017). Tasks scheduling and resource allocation in heterogeneous cloud for delay-bounded mobile edge computing, Proceedings of IEEE International Conference on Communications, ICC 2017, Paris, France, pp. 1–7.