Have a personal or library account? Click to login

Performance Analysis of a Dual Stage Deep Rain Streak Removal Convolution Neural Network Module with a Modified Deep Residual Dense Network

Open Access
|Mar 2022

References

  1. Barnum, P.C., Narasimhan, S. and Kanade, T. (2009). Analysis of rain and snow in frequency space, International Journal of Computer Vision 86(2): 256, DOI: 10.1007/s11263-008-0200-2.10.1007/s11263-008-0200-2
  2. Chen, Y. and Wang, W. (2020). Recursive modified dense network for single-image deraining, Journal of Electronic Imaging 29(3): 10–12.10.1117/1.JEI.29.3.033006
  3. Ding, X., Chen, L., Zheng, X., Huang, Y. and Zeng, D. (2016). Single image rain and snow removal via guided L0 smoothing filter, Multimedia Tools and Applications 75(5): 2697–2712, DOI: 10.1007/s11042-015-2657-7.10.1007/s11042-015-2657-7
  4. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X. and Paisley, J. (2017). Removing rain from single images via a deep detail network, Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, pp. 1715–1723.
  5. Garg, K. and Nayar, S.K. (2004). Detection and removal of rain from videos, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, USA, Vol. 1, pp. I–I.
  6. Gu, S., Meng, D., Zuo, W. and Zhang, L. (2017). Joint convolutional analysis and synthesis for sparse representation for single image layer separation, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1717–1725.
  7. He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778.
  8. Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017). Densely connected convolutional networks, Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, pp. 2261–2269.
  9. Jayaraman, T. and Chinnusamy, G.S. (2020a). Analysis of deep rain streaks removal convolutional neural network-based post-processing techniques in HEVC encoder, Journal of Circuits, Systems and Computers 30(2): 1–21, Paper no. 2150020.10.1142/S0218126621500201
  10. Jayaraman, T. and Chinnusamy, G.S. (2020b). Investigation of filtering of rain streaks affected video sequences under various quantisation parameter in HEVC encoder using an enhanced V-BM4D algorithm, IET Image Processing 14(2): 337–347.10.1049/iet-ipr.2018.6005
  11. Kang, L., Lin, C. and Fu, Y. (2012). Automatic single-image-based rain streaks removal via image decomposition, IEEE Transactions on Image Processing 21(4): 1742–1755.10.1109/TIP.2011.217905722167628
  12. Kim, J., Lee, C., Sim, J. and Kim, C. (2013). Single-image deraining using an adaptive nonlocal means filter, IEEE International Conference on Image Processing, Melbourne, Australia, pp. 914–917.
  13. Kou, F., Chen, W., Wen, C. and Li, Z. (2015). Gradient domain guided image filtering, IEEE Transactions on Image Processing 24(11): 4528–4539.10.1109/TIP.2015.246818326285153
  14. Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85–106, DOI: 10.34768/amcs-2021-0007.
  15. Koziarski, M. and Cyganek, B. (2018). Impact of low resolution on image recognition with deep neural networks: An experimental study, International Journal of Applied Mathematics and Computer Science 28(4): 735–744, DOI: 10.2478/amcs-2018-0056.10.2478/amcs-2018-0056
  16. Li, P., Tian, J., Tang, Y., Wang, G. and Wu, C. (2020). Model-based deep network for single image deraining, IEEE Access 8(1): 14036–14047.10.1109/ACCESS.2020.2965545
  17. Li, X., Wu, J., Lin, Z., Liu, H. and Zha, H. (2018). Recurrent squeeze-and-excitation context aggregation net for single image deraining, Proceedings of the European Conference on Computer Vista (ECCV), Amsterdam, The Netherlands, pp. 254–269.
  18. Li, Y., Tan, R.T., Guo, X., Lu, J. and Brown, M.S. (2016). Rain streak removal using layer priors, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 2736–2744.
  19. Lin, C.Y., Tao, Z., Xu, A.S., Kang, L.W. and Akhyar, F. (2020). Sequential dual attention network for rain streak removal in a single image, IEEE Transactions on Image Processing 29(1): 9250–9265.10.1109/TIP.2020.302540232976099
  20. Papiez, A., Badie, C. and Polanska, J. (2019). Machine learning techniques combined with dose profiles indicate radiation response biomarkers, International Journal of Applied Mathematics and Computer Science 29(1): 169–178, DOI: 10.2478/amcs-2019-0013.10.2478/amcs-2019-0013
  21. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,Desmaison, A.,Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library, arXiv 1912.01703 (NeurIPS).
  22. Ren, D., Shang, W., Zhu, P., Hu, Q., Meng, D. and Zuo, W. (2020). Single image deraining using bilateral recurrent network, IEEE Transactions on Image Processing 29(1): 6852–6863.10.1109/TIP.2020.2994443
  23. Ren, D., Zuo, W., Hu, Q., Zhu, P. and Meng, D. (2019). Progressive image deraining networks: A better and simpler baseline, IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA pp. 3937–3946.
  24. Sharma, P.K., Basavaraju, S. and Sur, A. (2021). High-resolution image de-raining using conditional GAN with sub-pixel upscaling, Multimedia Tools and Applications 80(1): 1075–1094, DOI: 10.1007/s11042-020-09642-7.10.1007/s11042-020-09642-7
  25. Sheikh, H.R. and Bovik, A.C. (2006). Image information and visual quality, IEEE Transactions on Image Processing 15(2): 430–444.10.1109/TIP.2005.859378
  26. Thiyagarajan, J. and Gowri Shankar, C. (2020). Quality improvement and performance analysis of high efficiency video coding under high quantization parameters and rain streaks, Signal, Image and Video Processing 14(2): 387–395, DOI: 10.1007/s11760-019-01565-7.10.1007/s11760-019-01565-7
  27. Wang, C., Zhang, M., Su, Z., Yao, G., Wang, Y., Sun, X. and Luo, X. (2019). From coarse to fine: A stage-wise deraining net, IEEE Access 7(1): 84420–84428.10.1109/ACCESS.2019.2922549
  28. Wang, M., Chen, L., Liang, Y., Hao, Y., He, H. and Li, C. (2020a). Single image rain removal with reusing original input squeeze-and-excitation network, IET Image Processing 14(8): 1467–1474.10.1049/iet-ipr.2019.0716
  29. Wang, M., Chen, L., Liang, Y., Huang, H. and Cai, R. (2020b). Deep learning method for rain streaks removal from single image, Journal of Engineering 2020(13): 555–560.10.1049/joe.2019.1197
  30. Wang, Y., Gong, D., Yang, J., Shi, Q., van den Hengel, A., Xie, D. and Zeng, B. (2020c). Deep Single Image Deraining via Modeling Haze-like Effect, IEEE Transactions on Multimedia 23(1): 1–1.10.1109/TMM.2020.3013383
  31. Wang, Y., Zhang, D. and Dai, G. (2020d). Classification of high resolution satellite images using improved U-Net, International Journal of Applied Mathematics and Computer Science 30(3): 399–413, DOI: 10.34768/amcs-2020-0030.
  32. Wang, Z. and Bovik, A.C. (2002). A universal image quality index, IEEE Signal Processing Letters 9(3): 81–84.10.1109/97.995823
  33. Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600–612.10.1109/TIP.2003.819861
  34. Wei, W., Meng, D., Zhao, Q., Xu, Z. and Wu, Y. (2018). Semi-supervised transfer learning for image rain removal, 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, Long Beach, USA, pp. 3877–3886.
  35. Wu, S. and Zhou, J. (2020). MSFA-Net: A network for single image deraining, Journal of Physics: Conference Series 1584(1), Paper no. 012047.
  36. Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S. and Liu, J. (2020). Joint rain detection and removal from a single image with contextualized deep networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 42(6): 1377–1393.10.1109/TPAMI.2019.289579330703011
  37. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z. and Yan, S. (2017). Deep joint rain detection and removal from a single image, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 1685–1694.
  38. Zhang, H. and Patel, V.M. (2018). Density-aware single image de-raining using a multi-stream dense network, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, USA, pp. 695–704.
  39. Zhang, L., Zhang, L., Mou, X. and Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment, IEEE Transactions on Image Processing 20(8): 2378–2386.10.1109/TIP.2011.210973021292594
  40. Zhang, Y., Tian, Y., Kong, Y., Zhong, B. and Fu, Y. (2018). Residual dense network for image super-resolution, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 2472–2481.
DOI: https://doi.org/10.34768/amcs-2022-0009 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 111 - 123
Submitted on: Jul 9, 2021
Accepted on: Jan 26, 2022
Published on: Mar 31, 2022
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Thiyagarajan Jayaraman, Gowri Shankar Chinnusamy, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.