Albasri, S., Popescu, M. and Keller, J.M. (2019). Surgery task classification using procrustes analysis, 48th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2019, Washington, USA, pp. 1–6.
Aronov, B., Har-Peled, S., Knauer, C., Wang, Y. and Wenk, C. (2006). Fréchet distance for curves, revisited, in Y. Azar and T. Erlebach (Eds), Algorithms—ESA 2006, Springer, Berlin, pp. 52–63.10.1007/11841036_8
Auder, B. and Fischer, A. (2012). Projection-based curve clustering, Journal of Statistical Computation and Simulation82(8): 1145–1168.10.1080/00949655.2011.572882
Cao, Y. and Mumford, D. (2002). Geometric structure estimation of axially symmetric pots from small fragments, Signal Processing, Pattern Recognition, and Applications, Crete, Greece.
Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 8526–8535.
Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F. and Mathieu, C. (2017). Hierarchical clustering: Objective functions and algorithms, Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, USA, pp. 378–397.
Davidson, I. and Ravi, S.S. (2007). Intractability and clustering with constraints, Proceedings of the 24th International Conference on Machine Learning, Corvalis, USA, pp. 201–208.
Efrat, A., Fan, Q. and Venkatasubramanian, S. (2007). Curve matching, time warping, and light fields: New algorithms for computing similarity between curves, Journal of Mathematical Imaging and Vision27(3): 203–216.10.1007/s10851-006-0647-0
Eguizabal, A., Schreier, P.J. and Schmidt, J. (2019). Procrustes registration of two-dimensional statistical shape models without correspondences, CoRR abs/1911.11431.
Gilboa, A., Karasik, A., Sharon, I. and Smilansky, U. (2004). Towards computerized typology and classification of ceramics, Journal of Archaeological Science31(6): 681–694.10.1016/j.jas.2003.10.013
Goodall, C. (1991). Procrustes methods in the statistical analysis of shape, Journal of the Royal Statistical Society B: Methodological53(2): 285–339.10.1111/j.2517-6161.1991.tb01825.x
Hosni, N., Drira, H., Chaieb, F. and Amor, B.B. (2018). 3D Gait recognition based on functional PCA on Kendall’s shape space, 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 2130–2135.
Hristov, V. and Agre, G. (2013). A software system for classification of archaeological artefacts represented by 2D plans, Cybernetics and Information Technologies13(2): 82–96.10.2478/cait-2013-0017
Kaliszewska, A. and Syga, M. (2018). On representative functions method for clustering of 2D contours with application to pottery fragments typology, Control and Cybernetics47(1): 85–108.
Kanevski, M. and Timonin, V. (2010). Machine learning analysis and modeling of interest rate curves, ESANN 2010: European Symposium on Artificial Neural Networks—Computational Intelligence and Machine Learning, Bruges, Belgium, pp. 47–52.
Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS’02, Vancouver, Canada, p. 463–470.
Kotan, M., Öz, C. and Kahraman, A. (2021). A linearization-based hybrid approach for 3D reconstruction of objects in a single image, International Journal of Applied Mathematics and Computer Science31(3): 501–513, DOI: 10.34768/amcs-2021-0034.
Leski, J.M. and Kotas, M.P. (2018). Linguistically defined clustering of data, International Journal of Applied Mathematics and Computer Science28(3): 545–557, DOI: 10.2478/amcs-2018-0042.10.2478/amcs-2018-0042
Maiza, C. and Gaildart, V. (2005). Automatic classification of archaeological potsherds, 8th International Conference on Computer Graphics and Artificial Intelligence, 3IA’2005, Limoges, France, pp. 11–12.
Piccoli, C., Aparajeya, P., Papadopoulos, G.T., Bintliff, J., Leymarie, F., Bes, P., Van der Enden, M., P.J. and Daras, P. (2015). Towards the automatic classification of pottery sherds: Two complementary approaches, in A. Traviglia (Ed.), Across Space and Time, Amsterdam University Press, Amsterdam, pp. 463–474.
Pizarro, D. and Bartoli, A. (2011). Global optimization for optimal generalized procrustes analysis, CVPR’11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2409–2415.
Sablatnig, R., Menard, C. and Kropatsch, W. (1998). Classification of archaeological fragments using a description language, European Association for Signal Processing (EUSIPCO), Rhodes, Greece, Vol. 2, pp. 1097–1100.
Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2010). Classification of functional data: Unsupervised curve clustering when curves are misaligned, 2010 JSM Proceedings, Vancouver, Canada, pp. 4034–4047.
Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2012). Joint clustering and alignment of functional data: An application to vascular geometries, in. A. Di Ciaccio et al. (Eds.), Advanced Statistical Methods for the Analysis of Large Data-Sets, Springer, Berlin/Heidelberg, pp. 34–43.10.1007/978-3-642-21037-2_4
Sharon, E. and Mumford, D. (2006). 2D-shape analysis using conformal mapping, International Journal of Computer Vision70(1): 55–75.10.1007/s11263-006-6121-z
Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science31(2): 303–319, DOI:10.34768/amcs-2021-0021
Vogogias, A., Kennedy, J., Archambault, D., Smith, V.A. and Currant, H. (2016). MLCut: Exploring multi-level cuts in dendrograms for biological data, in C. Turkay and T.R. Wan (Eds), Computer Graphics and Visual Computing, Eurographics Association, Geneve.
Wierzchoń, S.T. and Kłopotek, M.A. (2015). Algorithms of Cluster Analysis, Information Technologies: Research and Their Interdisciplinary Applications 3, Polish Academy of Sciences, Warsaw.
Wilczek, J., Monna, F., Navarro, N. and Chateau-Smith, C. (2021). A computer tool to identify best matches for pottery fragments, Journal of Archaeological Science: Reports37: 102891.10.1016/j.jasrep.2021.102891
Zhou, F. and De la Torre, F. (2012). Generalized time warping for multi-modal alignment of human motion, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 1282–1289.