Bazzani, L., Cristani, M. and Murino, V. (2012). Decentralized particle filter for joint individual-group tracking, IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 1886–1893, DOI: 10.1109/CVPR.2012.6247888.10.1109/CVPR.2012.6247888
Benfold, B. and Reid, I. (2011). Stable multi-target tracking in real-time surveillance video, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 3457–3464, DOI: 10.1109/CVPR.2011.5995667.10.1109/CVPR.2011.5995667
Berclaz, J., Fleuret, F., Turetken, E. and Fua, P. (2011). Multiple object tracking using k-shortest paths optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence33(9): 1806–1819, DOI: 10.1109/TPAMI.2011.21.10.1109/TPAMI.2011.2121282851
Bochinski, E., Senst, T. and Sikora, T. (2018). Extending IOU based multi-object tracking by visual information, 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, pp. 1–6, DOI: 10.1109/AVSS.2018.8639144.10.1109/AVSS.2018.8639144
Ciaparrone, G., Luque Sanchez, F., Tabik, S., Troiano, L., Tagliaferri, R. and Herrera, F. (2020). Deep learning in video multi-object tracking: A survey, Neurocomputing381: 61–88, DOI: 10.1016/j.neucom.2019.11.023.10.1016/j.neucom.2019.11.023
Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection, IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, Vol. 1, pp. 886–893, DOI: 10.1109/CVPR.2005.177.10.1109/CVPR.2005.177
Dehghan, A., Modiri Assari, S. and Shah, M. (2015). GMMCP tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4091–4099, DOI: 10.1109/CVPR.2015.7299036.10.1109/CVPR.2015.7299036
Dollár, P., Appel, R., Belongie, S. and Perona, P. (2014). Fast feature pyramids for object detection, IEEE Transactions on Pattern Analysis and Machine Intelligence36(8): 1532–1545, DOI: 10.1109/TPAMI.2014.2300479.10.1109/TPAMI.2014.230047926353336
Edman, V., Andersson, M., Granström, K. and Gustafsson, F. (2013). Pedestrian group tracking using the GM-PHD filter, European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, pp. 1–5.
Garcia-Martin, A., Sanchez-Matilla, R. and Martinez, J.M. (2017). Hierarchical detection of persons in groups, Signal, Image and Video Processing11(7): 1181–1188, DOI: 10.1007/s11760-017-1073-z.10.1007/s11760-017-1073-z
Ge, W., Collins, R.T. and Ruback, R.B. (2012). Vision-based analysis of small groups in pedestrian crowds, IEEE Transactions on Pattern Analysis and Machine Intelligence34(5): 1003–1016, DOI: 10.1109/TPAMI.2011.176.10.1109/TPAMI.2011.17621844622
Gong, S., Han, H., Shan, S. and Chen, X. (2016). Actions recognition in crowd based on coarse-to-fine multi-object tracking, Asian Conference on Computer Vision, Taipei, Taiwan, pp. 478–490, DOI: 10.1007/978-3-319-54526-4_35.10.1007/978-3-319-54526-4_35
Heili, A. and Odobez, J.-M. (2013). Parameter estimation and contextual adaptation for a multi-object tracking CRF model, IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), Clearwater, USA, pp. 14–21, DOI: 10.1109/PETS.2013.6523790.10.1109/PETS.2013.6523790
Hofmann, M., Haag, M. and Rigoll, G. (2013). Unified hierarchical multi-object tracking using global data association, IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), Clearwater, USA, pp. 22–28, DOI: 10.1109/PETS.2013.6523791.10.1109/PETS.2013.6523791
Jacques, J.C.S., Braun, A., Soldera, J., Musse, S.R. and Jung, C.R. (2007). Understanding people motion in video sequences using Voronoi diagrams, Pattern Analysis and Applications10(4): 321–332, DOI: 10.1007/s10044-007-0070-1.10.1007/s10044-007-0070-1
Kasprzak, W., Wilkowski, A. and Czapnik, K. (2012). Hand gesture recognition based on free-form contours and probabilistic inference, International Journal of Applied Mathematics and Computer Science22(2): 437–448, DOI: 10.2478/v10006-012-0033-6.10.2478/v10006-012-0033-6
Li, D., Zhu, J., Xu, B., Lu, M. and Li, M. (2018). An ant-based filtering random-finite-set approach to simultaneous localization and mapping, International Journal of Applied Mathematics and Computer Science28(3): 505–519, DOI: 10.2478/amcs-2018-0039.10.2478/amcs-2018-0039
Mazzon, R., Poiesi, F. and Cavallaro, A. (2013). Detection and tracking of groups in crowd, IEEE International Conference on Advanced Video and Signal Based Surveil-lance (AVSS), Krakow, Poland, pp. 202–207, DOI: 10.1109/AVSS.2013.6636640.10.1109/AVSS.2013.6636640
Milan, A., Roth, S. and Schindler, K. (2014). Continuous energy minimization for multitarget tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence36(1): 58–72, DOI: 10.1109/TPAMI.2013.103.10.1109/TPAMI.2013.10324231866
Park, M.-W. and Brilakis, I. (2016). Continuous localization of construction workers via integration of detection and tracking, Automation in Construction72(Part 2): 129–142, DOI: 10.1016/j.autcon.2016.08.039.10.1016/j.autcon.2016.08.039
Raj, K.S. and Poovendran, R. (2014). Pedestrian detection and tracking through hierarchical clustering, International Conference on Information Communication and Embedded Systems, Chennai, India, pp. 1–4, DOI: 10.1109/ICICES.2014.7033991.10.1109/ICICES.2014.7033991
Ren, W., Kang, D., Tang, Y. and Chan, A.B. (2018). Fusing crowd density maps and visual object trackers for people tracking in crowd scenes, IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 5353–5362, DOI: 10.1109/CVPR.2018.00561.10.1109/CVPR.2018.00561
Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A. and Reid, I. (2015). Joint probabilistic data association revisited, IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 3047–3055, DOI: 10.1109/ICCV.2015.349.10.1109/ICCV.2015.349
Rodriguez, M., Sivic, J., Laptev, I. and Audibert, J.-Y. (2011). Data-driven crowd analysis in videos, 2011 International Conference on Computer Vision, Barcelona, Spain, pp. 1235–1242, DOI: 10.1109/ICCV.2011.6126374.10.1109/ICCV.2011.6126374
Shao, J., Change Loy, C. and Wang, X. (2014). Scene-independent group profiling in crowd, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp. 2219–2226, DOI: 10.1109/CVPR.2014.285.10.1109/CVPR.2014.285
Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S. and Schiele, B. (2013). Learning people detectors for tracking in crowded scenes, Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, pp. 1049–1056, DOI: 10.1109/ICCV.2013.134.10.1109/ICCV.2013.134
Wang, Q., Chen, M. and Li, X. (2017). Quantifying and detecting collective motion by manifold learning, AAAI Conference on Artificial Intelligence, San Francisco, USA, pp. 4292–4298, DOI: 10.5555/3298023.3298190.
Wang, Q., Chen, M., Nie, F. and Li, X. (2020a). Detecting coherent groups in crowd scenes by multiview clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence42(1): 46–58, DOI: 10.1109/TPAMI.2018.2875002.10.1109/TPAMI.2018.287500230307858
Wang, Q., Gao, J., Lin, W. and Li, X. (2020b). NWPU-crowd: A large-scale benchmark for crowd counting and localization, IEEE Transactions on Pattern Analysis and Machine Intelligence43(6): 2141–2149, DOI: 10.1109/TPAMI.2020.3013269.10.1109/TPAMI.2020.301326932750840
Wang, Q., Gao, J., Lin, W. and Yuan, Y. (2020c). Pixel-wise crowd understanding via synthetic data, International Journal of Computer Vision129(1): 225–245, DOI: 10.1007/s11263-020-01365-4.10.1007/s11263-020-01365-4
Wen, L., Lei, Z., Lyu, S., Li, S. Z. and Yang, M.-H. (2016). Exploiting hierarchical dense structures on hypergraphs for multi-object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence38(10): 1983–1996, DOI: 10.1109/TPAMI.2015.2509979.10.1109/TPAMI.2015.250997926700969
Yang, B. and Nevatia, R. (2014). Multi-target tracking by online learning a CRF model of appearance and motion patterns, International Journal of Computer Vision107(2): 203–217, DOI: 10.1007/s11263-013-0666-4.10.1007/s11263-013-0666-4
Yu, H., Zhou, Y., Simmons, J., Przybyla, C.P., Lin, Y., Fan, X., Mi, Y. and Wang, S. (2016). Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences, IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 952–960, DOI: 10.1109/CVPR.2016.109.10.1109/CVPR.2016.109
Zhang, L., He, Z., Gu, M. and Yu, H. (2018). Crowd segmentation method based on trajectory tracking and prior knowledge learning, Arabian Journal for Science and Engineering43(12): 7143–7152, DOI: 10.1007/s13369-017-2995-z.10.1007/s13369-017-2995-z
Zhou, X., Zhuo, J. and Krahenbuhl, P. (2019). Bottom-up object detection by grouping extreme and center points, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, pp. 850–859, DOI: 10.1109/CVPR.2019.00094.10.1109/CVPR.2019.00094
Zhu, F., Wang, X. and Yu, N. (2014). Crowd tracking with dynamic evolution of group structures, European Conference on Computer Vision, Zurich, Switzerland, pp. 139–154, DOI: 10.1007/978-3-319-10599-4_10.10.1007/978-3-319-10599-4_10
Zhu, F., Wang, X. and Yu, N. (2018). Crowd tracking by group structure evolution, IEEE Transactions on Circuits and Systems for Video Technology28(3): 772–786, DOI: 10.1109/TCSVT.2016.2615460.10.1109/TCSVT.2016.2615460
Zitouni, M.S., Bhaskar, H. and Al-Mualla, M.E. (2016). Robust background modeling and foreground detection using dynamic textures, International Conference on Computer Vision Theory and Applications (VISIGRAPP’16), Rome, Italy, pp. 403–410, DOI: 10.5220/0005724204030410.10.5220/0005724204030410
Zitouni, M.S., Sluzek, A. and Bhaskar, H. (2019a). CNN-based analysis of crowd structure using automatically annotated training data, IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, pp. 1–8, DOI: 10.1109/AVSS.2019.8909846.10.1109/AVSS.2019.8909846
Zitouni, M.S., Sluzek, A. and Bhaskar, H. (2019b). Visual analysis of socio-cognitive crowd behaviors for surveillance: A survey and categorization of trends and methods, Engineering Applications of Artificial Intelligence82: 294–312, DOI: 10.1016/j.engappai.2019.04.012.10.1016/j.engappai.2019.04.012
Zitouni, M.S., Sluzek, A. and Bhaskar, H. (2020). Towards understanding socio-cognitive behaviors of crowds from visual surveillance data, Multimedia Tools and Applications79(3): 1781–1799, DOI: 10.1007/s11042-019-08201-z.10.1007/s11042-019-08201-z