Have a personal or library account? Click to login

A Feasible Schedule for Parallel Assembly Tasks in Flexible Manufacturing Systems

Open Access
|Mar 2022

References

  1. Baccelli, F., Cohen, G., Olsder, G.J. and Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley& Sons, Hoboken.
  2. Baruwa, O.T., Piera, M.A. and Guasch, A. (2015). Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(5): 1–12.10.1109/TSMC.2014.2376471
  3. Butkovic, P. (2010). Max-Linear Systems: Theory and Algorithms, Springer, London.10.1007/978-1-84996-299-5
  4. Dizdar, E.N. and Koçar, O. (2020). Fuzzy logic-based decision-making system design for safe forklift truck speed: Cast cobblestone production application, Soft Computing 24(19): 1–14.10.1007/s00500-020-04843-6
  5. Ebrahimi, A., Sajadi, S., Roshanzamir, P. and Azizi, M. (2015). Determining the optimal performance of flexible manufacturing systems using network analysis and simulation process, International Journal of Management, Economics and and Social Sciences 4(1): 12–17.
  6. Groover, M. (2014). Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd Edition, Pearson, London.
  7. Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer, Boston.10.1007/978-1-4419-8237-7_11
  8. Madakam, S., Ramaswamy R. and Tripathi, S. (2015). Internet of things (IoT): A literature review, Journl of Computing and Communications 3(05): 164.10.4236/jcc.2015.35021
  9. Majdzik, P. (2020). Feasible schedule under faults in the assembly system, 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, pp. 1049–1054.
  10. Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R. and Mrugalska, B. (2016). A fault-tolerant approach to the control of a battery assembly system, Control Engineering Practice 55: 139–148.10.1016/j.conengprac.2016.07.001
  11. Majdzik, P., Witczak, M., Lipiec, B. and Banaszak, Z. (2021). Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers, International Journal of Computer Integrated Manufacturing: 1–18, DOI: 10.1080/0951192X.2021.1872103.10.1080/0951192X.2021.1872103
  12. Mircetic, D., Ralevic, N., Nikolicic, S., Maslaric, M. and Stojanovic, D. (2016). Expert system models for forecasting forklifts engagement in a warehouse loading operation: A case study, PROMET— Traffic&Transportation 28(4): 393–401.10.7307/ptt.v28i4.1900
  13. Nivolianitou, Z. and Konstantinidou, M. (2018). A fuzzy modeling application for human reliability analysis in the process industry, in H. Pham (Ed.), Human Factors and Reliability Engineering for Safety and Security in Critical Infrastructures, Springer, London, pp. 109–154.10.1007/978-3-319-62319-1_5
  14. RAFI GmbH & Co. KG (2021). KIS.ME User Manual, RAFI GmbH & Co. KG, Berg, https://kisme.rafi.de/documents/KISME-UserManual.pdf.
  15. Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2016). A survey on parallel and distributed multi-agent systems for high performance computing simulations, Computer Science Review 22: 27–46.10.1016/j.cosrev.2016.08.001
  16. Rutkowski, T., Łapa, K. and Nielek, R. (2019). On explainable fuzzy recommenders and their performance evaluation, International Journal of Applied Mathematics and Computer Science 29(3): 595–610, DOI: 10.2478/amcs-2019-0044.10.2478/amcs-2019-0044
  17. Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
  18. Segura, M.A., Hennequin, S. and Finel, B. (2016). Human factor modelled by fuzzy logic in preventive maintenance actions, International Journal of Operational Research 27(1–2): 316–340.10.1504/IJOR.2016.078468
  19. Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.10.1515/amcs-2015-0061
  20. Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.10.1016/0165-0114(92)90113-I
  21. Van Den Boom, T. and De Schutter, B. (2006). Modelling and control of discrete event systems using switching max-plus-linear systems, Control Engineering Practice 14(10): 1199–1211.10.1016/j.conengprac.2006.02.006
  22. Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.10.1007/978-3-319-03014-2
  23. Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2019). Multiple AGV fault-tolerant within an agile manufacturing warehouse, IFAC-PapersOnLine 52(13): 1914–1919.10.1016/j.ifacol.2019.11.482
  24. Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2020). A fault-tolerant control strategy for multiple automated guided vehicles, Journal of Manufacturing Systems 55(4): 56–68.10.1016/j.jmsy.2020.02.009
DOI: https://doi.org/10.34768/amcs-2022-0005 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 51 - 63
Submitted on: Nov 7, 2021
Accepted on: Jan 28, 2022
Published on: Mar 31, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Paweł Majdzik, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.