Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G. and Yu, D. (2014a). Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing22(10): 1533–1545.10.1109/TASLP.2014.2339736
Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G. and Yu, D. (2014b). Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing22(10): 1533–1545.10.1109/TASLP.2014.2339736
Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018). 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data, Neurocomputing275: 1308–1317.10.1016/j.neucom.2017.09.069
Awada, W., Khoshgoftaar, T.M., Dittman, D., Wald, R. and Napolitano, A. (2012). A review of the stability of feature selection techniques for bioinformatics data, IEEE 13th International Conference on Information Reuse & Integration (IRI), Las Vegas, USA, pp. 356–363.
Azizjon, M., Jumabek, A. and Kim, W. (2020). 1D CNN based network intrusion detection with normalization on imbalanced data, International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, pp. 218–224.
Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009). Pearson correlation coefficient, in J. Benesty and W. Kellermann (Eds.), Noise Reduction in Speech Processing, Springer Topics in Signal Processing, Springer, Berlin, pp. 1–4.10.1007/978-3-642-00296-0_5
Bolón-Canedo, V., Sánchez-Maroño, N. and Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data, Knowledge and Information Systems34(3): 483–519.10.1007/s10115-012-0487-8
Broughton, R., Coope, I., Renaud, P. and Tappenden, R. (2010). Determinant and exchange algorithms for observation subset selection, IEEE Transactions on Image Processing19(9): 2437–2443.10.1109/TIP.2010.204815020388597
Cannas, L.M., Dessì, N. and Pes, B. (2013). Assessing similarity of feature selection techniques in high-dimensional domains, Pattern Recognition Letters34(12): 1446–1453.10.1016/j.patrec.2013.05.011
El Aboudi, N. and Benhlima, L. (2016). Review on wrapper feature selection approaches, International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, pp. 1–5.
Hajj, N., Rizk, Y. and Awad, M. (2019). A subjectivity classification framework for sports articles using cortical algorithms for feature selection, Neural Computing and Applications31: 8069–8085.10.1007/s00521-018-3549-3
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. and Inman, D.J. (2021). 1D convolutional neural networks and applications: A survey, Mechanical Systems and Signal Processing151: 107398.10.1016/j.ymssp.2020.107398
Kiranyaz, S., Ince, T. and Gabbouj, M. (2015a). Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Transactions on Biomedical Engineering63(3): 664–675.10.1109/TBME.2015.2468589
Kiranyaz, S., Ince, T. and Gabbouj, M. (2015b). Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Transactions on Biomedical Engineering63(3): 664–675.10.1109/TBME.2015.2468589
Koziarski, M. and Cyganek, B. (2018). Impact of low resolution on image recognition with deep neural networks: An experimental study, International Journal of Applied Mathematics and Computer Science28(4): 735–744, DOI: 10.2478/amcs-2018-0056.10.2478/amcs-2018-0056
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks, Communications of the ACM60(6): 84–90.10.1145/3065386
Kusy, M., Zajdel, R., Kluska, J. and Zabinski, T. (2020). Fusion of feature selection methods for improving model accuracy in the milling process data classification problem, International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1–8.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE86(11): 2278–2324.10.1109/5.726791
Li, Y., Hsu, D.F. and Chung, S.M. (2013). Combination of multiple feature selection methods for text categorization by using combinatorial fusion analysis and rank-score characteristic, International Journal on Artificial Intelligence Tools22(02): 1350001.10.1142/S0218213013500012
Lu, J., Zhao, T. and Zhang, Y. (2008). Feature selection based-on genetic algorithm for image annotation, Knowledge-Based Systems21(8): 887–891.10.1016/j.knosys.2008.03.051
Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R. and Consonni, V. (2013). Quantitative structure–activity relationship models for ready biodegradability of chemicals, Journal of Chemical Information and Modeling53(4): 867–878.10.1021/ci400021323469921
Narendra, P.M. and Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection, IEEE Transactions on Computers26(09): 917–922.10.1109/TC.1977.1674939
Pes, B. (2020). Ensemble feature selection for high-dimensional data: A stability analysis across multiple domains, Neural Computing and Applications32(10): 5951–5973.10.1007/s00521-019-04082-3
Robnik-Šikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF, Machine Learning53(1–2): 23–69.10.1023/A:1025667309714
Rodrigues, D., Pereira, L.A., Nakamura, R.Y., Costa, K.A., Yang, X.-S., Souza, A.N. and Papa, J.P. (2014). A wrapper approach for feature selection based on bat algorithm and optimum-path forest, Expert Systems with Applications41(5): 2250–2258.10.1016/j.eswa.2013.09.023
Rokach, L., Chizi, B. and Maimon, O. (2006). Feature selection by combining multiple methods, in M. Last et al. (Eds), Advances in Web Intelligence and Data Mining, Springer, Berlin/Heidelberg, pp. 295–304.10.1007/3-540-33880-2_30
Scherer, D., Müller, A. and Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition, International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 92–101.
Vergara, J.R. and Estévez, P.A. (2014). A review of feature selection methods based on mutual information, Neural Computing and Applications24(1): 175–186.10.1007/s00521-013-1368-0
Wang, Y., Zhang, D. and Dai, G. (2020). Classification of high resolution satellite images using improved U-Net, International Journal of Applied Mathematics and Computer Science30(3): 399–413, DOI: 10.34768/amcs-2020-0030.
Wuniri, Q., Huangfu, W., Liu, Y., Lin, X., Liu, L. and Yu, Z. (2019). A generic-driven wrapper embedded with feature-type-aware hybrid Bayesian classifier for breast cancer classification, IEEE Access7: 119931–119942.10.1109/ACCESS.2019.2932505
Zajdel, R., Kusy, M., Kluska, J. and Zabinski, T. (2020). Weighted feature selection method for improving decisions in milling process diagnosis, in L. Rutkowski et al. (Eds), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 12415, Part I, Springer, Cham, pp. 280–291.10.1007/978-3-030-61401-0_27