Alhawarat, M. and Hegazi, M. (2018). Revisiting k-means and topic modeling: A comparison study to cluster Arabic documents, IEEE Access6: 42740–42749.10.1109/ACCESS.2018.2852648
Banerjee, S. and Badr, Y. (2018). Evaluating decision analytics from mobile big data using rough set based ant colony, in G. Mastorakis et al. (Eds), Mobile Big Data, Springer, Cham, pp. 217–231.10.1007/978-3-319-67925-9_9
Bazan, J. (1996). Dynamic reducts and statistical inference, Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, Vol. 3, pp. 1147–1152.
Bazan, J., Drygaś, P., Zaręba, L. and Molenda, P. (2020). A new method of building a more effective ensemble classifiers, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1–6.
Bazan, J.G. (1998). A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables, Rough Sets in Knowledge Discovery1: 321–365.
Bazan, J.G., Szczuka, M. and Wroblewski, J. (2002). A new version of rough set exploration system, in J.F. Peters et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 397–404.10.1007/3-540-45813-1_52
Bazan, J., Peters, J. and Skowron, A. (2005). Behavioral pattern identification through rough set modelling, 10th International Conference Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, pp. 688–697.
Bello, R. and Falcon, R. (2017). Rough sets in machine learning: A review, in A. Skowron et al. (Eds), Thriving Rough Sets, Springer, Cham, pp. 87–118.10.1007/978-3-319-54966-8_5
Bhatt, R.B. and Gopal, M. (2006). On the extension of functional dependency degree from crisp to fuzzy partitions, Pattern Recognition Letters27(5): 487–491.10.1016/j.patrec.2005.09.011
Bhatt, R., Ramanna, S. and Peters, J.F. (2009). Software defect classification: A comparative study of rough-neuro-fuzzy hybrid approaches with linear and non-linear SVMs, in A. Abraham et al. (Eds.), Rough Set Theory: A True Landmark in Data Analysis, Studies in Computational Intelligence, Vol 174, Springer, Berlin/Heidelberg, pp. 213–231.10.1007/978-3-540-89921-1_8
Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R. and Szeląg, M. (2012). jMAF—Dominance-based rough set data analysis framework, in A. Skowron and Z. Suraj (Eds.), Rough Sets and Intelligent Systems—Professor Zdzislaw Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, Springer, pp. 185–209.
Chądzyńska-Krasowska, A., Stawicki, S. and ’Slęzak, D. (2017). A metadata diagnostic framework for a new approximate query engine working with granulated data summaries, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 623–643.10.1007/978-3-319-60837-2_50
Chen, L., Li, Z., Lv, M. and Xiong, M. (2020a). Intelligent prediction algorithm of economic trend index based on rough set support vector machine, Journal of Intelligent and Fuzzy Systems38(1): 147–153.10.3233/JIFS-179389
Chen, X., Li, D., Wang, P. and Yang, X. (2020b). A deep convolutional neural network with fuzzy rough sets for FER, IEEE Access8: 2772–2779.10.1109/ACCESS.2019.2960769
Chen, Q., Huang, M. and Wang, H. (2021). A feature discretization method for classification of high-resolution remote sensing images in coastal areas, IEEE Transactions on Geoscience and Remote Sensing59(10): 8584–8598.10.1109/TGRS.2020.3016526
Chen, Z. (2017). Exploring dynamic granules for time-varying big data, IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, Orlando, USA, pp. 1092–1097.
Chirigati, F., Rampin, R., Shasha, D. and Freire, J. (2016). ReproZip: Computational reproducibility with ease, Proceedings of the 2016 International Conference on Management of Data, New York, USA, pp. 2085–2088.
Chowdhury, T., Chakraborty, S. and Setua, S.K. (2016). Knowledge extraction from big data using MapReduce-based Parallel-Reduct algorithm, 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, pp. 240–246.
Chu, Z. and Zhang, Y. (2020). An accurate financially-challenged college student identification model based on rough set-bp neural networks and its application, International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, pp. 144–150.
Chen, Y., Xue, Y., Ma Y. and Xu, F. (2017). Measures of uncertainty for neighborhood rough sets, Knowledge-Based Systems120: 226–235.10.1016/j.knosys.2017.01.008
Cios, K. (2018). Deep neural networks—A brief history, in A. Gawęda et al. (Eds), Advances in Data Analysis with Computational Methods: Dedicated to Professor Jacek Zurada, Studies in Computational Intelligence, Vol. 738, Springer, Cham, pp. 183–200.10.1007/978-3-319-67946-4_7
Clark, P.G. and Grzymała-Busse, J.W. (2011). Experiments on probabilistic approximations, 2011 IEEE International Conference on Granular Computing, GrC-2011, Kaohsiung, Taiwan, pp. 144–149.
Clark, P.G., Grzymała-Busse, J.W., Hippe, Z.S., Mroczek, T. and Niemiec, R. (2020). Complexity of rule sets mined from incomplete data using probabilistic approximations based on generalized maximal consistent blocks, in M. Cristani et al. (Eds), Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, Vol. 176, Elsevier, Amsterdam, pp. 1803–1812.10.1016/j.procs.2020.09.219
Clark, P.G., Grzymała-Busse, J.W., Mroczek, T. and Niemiec, R. (2019). Rule set complexity in mining incomplete data using global and saturated probabilistic approximations, in R. Damasevicius and G. Vasiljeviene (Eds), Information and Software Technologies, Communications in Computer and Information Science, Vol. 1078, Springer, Cham, pp. 451–462.10.1007/978-3-030-30275-7_35
Cornelis, C., Verbiest, N. and Jensen, R. (2010). Ordered weighted average based fuzzy rough sets, in J. Yu et al. (Eds), Rough Set and Knowledge Technology, Springer, Berlin, pp. 78–85.10.1007/978-3-642-16248-0_16
Cui, G. and Gao, H. (2019). Rough set processing outliers in cluster analysis, 4th International IEEE Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 111–115.
Cui, W. and Huang, L. (2015). Knowledge reduction method based on information entropy for port big data using MapReduce, International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, Spain, pp. 1–6.
Czolombitko, M. and Stepaniuk, J. (2017). Scalable maximal discernibility discretization for big data, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 644–654.10.1007/978-3-319-60837-2_51
Dagdia, Z.C., Zarges, C., Beck, G., Azzag, H. and Lebbah, M. (2017). A distributed rough set theory based algorithm for an efficient big data preprocessing under the Spark framework, IEEE International Conference on Big Data (Big Data), Boston, USA, pp. 911–916.
Dagdia, Z.C., Zarges, C., Beck, G., Azzag, H. and Lebbah, M. (2018). A distributed rough set theory algorithm based on locality sensitive hashing for an efficient big data preprocessing, IEEE International Conference on Big Data, Seattle, USA, pp. 2597–2606.
D’eer, L., Cornelis, C. and Yao, Y. (2016). A semantically sound approach to Pawlak rough sets and covering-based rough sets, International Journal of Approximate Reasoning78: 62–72.10.1016/j.ijar.2016.06.013
Delimata, P., Moshkov, M., Skowron, A. and Suraj, Z. (2008). Comparison of lazy classification algorithms based on deterministic and inhibitory decision rules, 3rd International Conference on Rough Sets and Knowledge Technology, Chengdu, China, pp. 55–62.
Delimata, P. and Suraj, Z. (2013). Hybrid methods in data classification and reduction, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 43, Springer, Berlin/Heidelberg, pp. 263–291.10.1007/978-3-642-30341-8_14
Deng, Y., Ren, Z., Kong, Y., Bao, F. and Dai, Q. (2017). A hierarchical fused fuzzy deep neural network for data classification, IEEE Transaction on Fuzzy Systems25(4): 1006–1012.10.1109/TFUZZ.2016.2574915
Dubois, D. and Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems17(2–3): 191–209.10.1080/03081079008935107
Dubois, D. and Prade, H. (1992). Putting rough sets and fuzzy sets together, in R. Słowiński (Ed.), Intelligent Decision Support, Theory and Decision Library, Vol. 11, Springer, Dordrecht, pp. 203–232.10.1007/978-94-015-7975-9_14
El-Bably, M. and Kozae, A. (2014). New generalized definitions of rough membership relations and functions from topological point of view, Journal of Advances in Mathematics8(3): 1635–1652.
Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, 2nd International Conference on Knowledge Discovery and Data Mining, Portland, USA, pp. 226–231.
Ganivada, A. and Pal, S.K. (2011). A novel fuzzy rough granular neural network for classification, International Journal of Computational Intelligence Systems4(5): 1042–1051.10.1080/18756891.2011.9727852
Greco, S., Matarazzo, B., Słowiński, R. and Stefanowski, J. (2001). Variable consistency model of dominance-based rough sets approach, in W. Ziarko and Y. Yao (Eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, Vol. 2005, Springer, Berlin/Heidelberg, pp. 170–181.10.1007/3-540-45554-X_20
Greco, S., Matarazzo, B. and Słowinski, R. (1999). Rough approximation of a preference relation by dominance relations, European International Operational Research117(1): 63–83.10.1016/S0377-2217(98)00127-1
Grzegorowski, M., Janusz, A., Ślęzak, D. and Szczuka, M. (2017). On the role of feature space granulation in feature selection processes, IEEE International Conference on Big Data (Big Data), Boston, USA, pp. 1806–1815.
Grzymała-Busse, J.W. (1992). LERS—A system for learning from examples based on rough sets, in R. Słowiński (Ed.), Intelligent Decision Support, Theory and Decision Library, Vol. 11, Springer, Dordrecht, pp. 3–18.10.1007/978-94-015-7975-9_1
Hamidinekoo, A., Dagdia, Z.C., Suhail, Z. and Zwiggelaar, R. (2018). Distributed rough set based feature selection approach to analyse deep and hand-crafted features for mammography mass classification, IEEE International Conference on Big Data, Seattle, USA, Vol. 1, pp. 2423–2432.
Hong-Wei, Y. and Xindi, T. (2016). Based on rough sets and L1 regularization of the fault diagnosis of linear regression model, International Conference on Intelligent Transportation, Changsha, China, pp. 490–492.
Hu, F. and Wang, G. (2008). Huge data mining based on rough set theory and granular computing, IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, pp. 655–658.
Hu, Q., Li, L. and Zhu, P. (2013). Exploring neighborhood structures with neighborhood rough sets in classification learning, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memo-riam, Springer, Berlin/Heidelberg, pp. 277–307.10.1007/978-3-642-30344-9_10
Hu, Q., Zhang, L., Zhou, Y. and Pedrycz, W. (2017a). Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets, IEEE Transactions on Fuzzy Systems26(1): 226–238.10.1109/TFUZZ.2017.2647966
Hu, Q., Zhang, L., Zhou, Y. and Pedrycz, W. (2018). Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets, IEEE Transactions on Fuzzy Systems26(1): 226–238.10.1109/TFUZZ.2017.2647966
Hu, J., Li, T., Luo, C. and Li, S. (2017b). Incremental fuzzy probabilistic rough sets over two universes, International Journal of Approximate Reasoning81: 28–48.10.1016/j.ijar.2016.11.002
Huang, Y., Li, T., Luo, C., Fujita, H. and jinn Horng, S. (2017). Dynamic variable precision rough set approach for probabilistic set-valued information systems, Knowledge-Based Systems122(5): 131–147.10.1016/j.knosys.2017.02.002
Ilczuk, G. and Wakulicz-Deja, A. (2005). Rough sets approach to medical diagnosis system, in P.S. Szczepaniak et al. (Eds), Advances in Web Intelligence, Lecture Notes in Computer Science, Vol. 3528, Springer, Berlin/Heidelberg, pp. 204–210.10.1007/11495772_32
Inuiguchi, M. (2013). Rough representations of ill-known sets and their manipulations in low dimensional space, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Springer, Berlin/Heidelberg, pp. 309–331.10.1007/978-3-642-30344-9_11
Ishizu, S., Gehrmann, A. and Nagaw, Y.Y. (2007). Rough ontology: Extension of ontologies by rough sets, in G. Smith and M.J. Salvendy (Eds), Human Interface and the Management of Information: Methods, Techniques and Tools in Information Design, Springer, Berlin/Heidelberg, pp. 456–462.10.1007/978-3-540-73345-4_52
Isitor, E. and Stanier, C. (2016). Defining big data, Proceedings of the International Conference on Big Data and Advanced Wireless Technologies, New York, USA, pp. 1–6.
Islam, M., Inan, T., Rafi, S., Akter, S., Sarker, I.H. and Islam, A. (2020). A systematic review on the use of AI and ML for fighting the COVID-19 pandemic, IEEE Transactions on Artificial Intelligence1(3): 258–270.10.1109/TAI.2021.3062771
Ivanov, T., Korfiatis, N., Zicari, R. (2013). On the inequality of the 3V’s of big data architectural paradigms: A case for heterogeneity, arXiv abs/1311.0805.
Izakian, H., Pedrycz, W. and Jamal, I. (2015). Fuzzy clustering of time series data using dynamic time warping distance, Engineering Applications of Artificial Intelligence39: 235–244.10.1016/j.engappai.2014.12.015
Janusz, A. and Ślęzak, D. (2014). Rough set methods for attribute clustering and selection, Applied Artificial Intelligence28(3): 220–242.10.1080/08839514.2014.883902
Jensen, R. and Cornelis, C. (2008). A new approach to fuzzy-rough nearest neighbour classification, in C.C. Chan et al. (Eds), Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, Vol. 5306, Springer, Berlin/Heidelberg, pp. 310–319.10.1007/978-3-540-88425-5_32
Jensen, R., Cornelis, C. and Shen, Q. (2009). Hybrid fuzzy-rough rule induction and feature selection, 2009 IEEE International Conference on Fuzzy Systems, Jeju, South Korea, pp. 1151–1156.
Jian, Z., Sakai, H., Watada, J., Roy, A., Hilmi, M. and Hassan, B. (2019). An Apriori-based data analysis on suspicious network event recognition, IEEE International Conference on Big Data (Big Data): Suspicious Network Event Recognition, Los Angeles, USA, pp. 5888–5896.
Jing, S., Yang, J. and She, K. (2014). A parallel method for rough entropy computation using MapReduce, 10th International Conference on Computational Intelligence and Security, Kunming, China, pp. 707–710.
Jingjing, J., Hongzhe, X. and Zhuangzhuang, S. (2019). Application of attribute reduction algorithm of rough set based on mix_fp tree in computer teaching, 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, pp. 78–81.
John, G.H. and Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers, 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, pp. 338–345.
Kang, X., Liu, X. and Zhai, M. (2011). Instances selection for NN with fuzzy rough technique, International Conference on Machine Learning and Cybernetics, Guilin, China, pp. 1097–1100.
Khan, M.A. and Banerjee, M. (2013). Algebras for information systems, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, Springer, Berlin/Heidelberg, pp. 381–407.10.1007/978-3-642-30344-9_14
Kong, L., Qu, W., Yu, J., Zuo, H., Chen, G., Xiong, F., Pan, S. and Siyu Lin, M.Q. (2020). Distributed feature selection for big data using fuzzy rough sets, IEEE Transactions on Fuzzy Systems28(5): 846–857.10.1109/TFUZZ.2019.2955894
Kopczyński, M., Grześ, T. and Stepaniuk, J. (2016). Core for large datasets: Rough sets on FPGA, Fundamenta Informaticae147(2–3): 241–259.10.3233/FI-2016-1407
Kopczyński, M., Grześ, T. and Stepaniuk, J. (2017). Hardware supported rule-based classification on big datasets, in L. Polkowski et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 10313, Springer, Cham, pp. 655–668.10.1007/978-3-319-60837-2_52
Krishnamurthy, S. and Janardanan, A. (2018). Rough set based ontology matching, International Journal of Rough Sets and Data Analysis5(2): 46–68.10.4018/IJRSDA.2018040103
Kundu, S. and Pal, S.K. (2018). Double bounded rough set, tension measure, and social link prediction, IEEE Transactions on Computational Social Systems5(3): 841–853.10.1109/TCSS.2018.2861215
Kune, R. (2014). Genetic algorithm based data-aware group scheduling for big data clouds, BDC’14: Proceedings of the 2014 IEEE/ACM International Symposium on Big Data Computing, London, UK, pp. 96–104.
Kwiatkowski, P., Hoa, N. and Nguyen, H.S. (2010). On scalability of rough set methods, in E. Hüllermeier et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Methods, Communications in Computer and Information Science, Vol. 80, Springer, Berlin/Heidelberg, pp. 288–297.10.1007/978-3-642-14055-6_30
Lenz, O.U., Peralta, D. and Cornelis, C. (2020). Fuzzy-rough-learn 0.1: A Python library for machine learning with fuzzy rough sets, in R. Bello et al. (Eds), Rough Sets, Lecture Notes in Computer Science, Vol. 12179, Springer, Cham, pp. 491–499.
Li, D., Zhang, H., Li, T., Bouras, A. and Wang, X.Y.T. (2021). Hybrid missing value imputation algorithms using fuzzy c-means and vaguely quantified rough set, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2021.3058643, (early access).10.1109/TFUZZ.2021.3058643
Li, T., Luo, C., Chen, H. and Zhang, J. (2015). PICKT: A solution for big data analysis, in D. Ciucci et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 9436, Springer, Cham, pp. 15–25.10.1007/978-3-319-25754-9_2
Li, X., Li, X. and Zhao, Z. (2016). Combining deep learning with rough set analysis: A model of cyberspace situational awareness, 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, pp. 182–185.
Li, X., Luo, C., Liu, P. and Wang, L. (2019). Information entropy differential privacy: a differential privacy protection data method based on rough set theory, IEEE International Conference on Dependable, Autonomic and Secure Computing/Pervasive Intelligence and Computing/Cloud and Big Data Computing/Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, pp. 918–923.
Li, X. and Shen, Y. (2020). Discretization algorithm for incomplete economic information in rough set based on big data, Symmetry12(8): 1245.10.3390/sym12081245
Lin, G., Liang, J. and Qian, Y. (2015). An information fusion approach by combining multigranulation rough sets and evidence theory, Information Sciences314(1): 184–199.10.1016/j.ins.2015.03.051
Lin, G., Liang, J., Qian, Y. and Li, J. (2016). A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems, Knowledge-Based Systems91: 102–113.10.1016/j.knosys.2015.09.022
Liu, P. and Zhang, G. (2019). Research on key attributes of learning behavior based on rough set, 14th International Conference on Computer Science & Education (ICCSE), Toronto, Canada, pp. 1030–1034.
Lu, Z., Liu, K., Liu, Z., Wang, C., Shen, M. and Xu, T. (2019). An efficient annotation method for big data sets of high-resolution earth observation images, ICBDT 2019: Proceedings of the 2nd International Conference on Big Data Technologies, Jinan, China, pp. 240–243.
Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2016). Efficient updating of probabilistic approximations with incremental objects, Knowledge-Based Systems109(C): 71–83.10.1016/j.knosys.2016.06.025
Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2018). Incremental rough set approach for hierarchical multicriteria classification, Information Sciences429: 72–87.10.1016/j.ins.2017.11.004
Lv, Z., Liu, T., Shi, C., Benediktsson, J.A. and Du, H. (2019). A novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images, IEEE Access7: 34425–34437.10.1109/ACCESS.2019.2892648
Madrid, N., Medina, J. and Ramírez-Poussa, E. (2020). Rough sets based on Galois connections, International Journal of Applied Mathematics and Computer Science30(2): 299–313, DOI: 10.34768/amcs-2020-0023.
Meng, Y., Liang, J., Cao, F. and He, Y. (2018). A new distance with derivative information for functional k-means clustering algorithm, Information Sciences463: 166–185.10.1016/j.ins.2018.06.035
Mondelli, M.L., Peterson, A. and Gadelha, L. (2019). Exploring reproducibility and FAIR principles in data science using ecological niche modeling as a case study, in G. Guizzardi et al. (Eds), Advances in Conceptual Modeling, Lecture Notes in Computer Science, Vol. 11787, Springer, Cham, pp. 23–33.10.1007/978-3-030-34146-6_3
Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: An overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery2(1): 86–97.10.1002/widm.53
Narayanan, U., Paul, V. and Joseph, S. (2017). Different analytical techniques for big data analysis: A review, International Conference on Energy, Chennai, India, pp. 372–382.
Nguyen, H.S. (1998). Discretization methods in data mining, in L. Polkowski (Ed.), Rough Sets in Knowledge Discovery, Physica-Verlag, Heidelberg, pp. 451–482.
Nguyen, H.S. (2006). Approximate Boolean reasoning: Foundations and applications in data mining, in J.F. Peters and A. Skowron (Eds), Transactions on Rough Sets, Lecture Notes in Computer Science, Vol. 4100, Springer, Berlin/Heidelberg, pp. 334–506.10.1007/11847465_16
Nguyen, H.S., Nguyen, N.T., Nguyen, H.S. and Nguyen, L. (2017). Some observations on representation of dependency degree k, 9th International Conference on Knowledge and Systems Engineering (KSE), Hue, Vietnam, pp. 13–17.
Naouali, S. and Missaoui, R. (2005). Flexible query answering in data cubes, in A.M. Tjoa and J. Trujillo (Eds), Data Warehousing and Knowledge Discovery, Lecture Notes in Computer Science, Vol 3589, Springer, Berlin/Heidelberg, pp. 221–232.10.1007/11546849_22
Nowak-Brzezińska, A. and Wakulicz-Deja, A. (2019). Exploration of rule-based knowledge bases: A knowledge engineer’s support, Information Sciences485(2): 301–318.10.1016/j.ins.2019.02.019
Ohrn, A. and Komorowski, J. (1997). ROSETTA: A rough set toolkit for analysis of data, Workshop on Rough Sets and Soft Computing (RSSC’97), Durham, USA, Vol. 3, pp. 403–407.
Pal, S.K. (2020). granular mining and big data analytics: Rough models and challenges, Proceedings of the National Academy of Sciences, India, A: Physical Sciences90: 193–208.10.1007/s40010-018-0578-3
Pal, S.K., Bhoumik, D. and Chakraborty, D. (2019). Granulated deep learning and Z-numbers in motion detection and object recognition, Neural Computing and Applications32(4): 1–16.10.1007/s00521-019-04200-1
Pal, S.K. and Kundu, S. (2017). Granular social network: Model and applications, in A.Y. Zomaya and S. Sakr (Eds), Handbook of Big Data Technologies, Springer, Cham, pp. 617–651.10.1007/978-3-319-49340-4_18
Pal, S.K. and Meher, S.K. (2013). Natural computing: A problem solving paradigm with granular information processing, Applied Soft Computing13(9): 3944–3955.10.1016/j.asoc.2013.06.026
Pal, S.K., Polkowski, L. and Skowron, A. (2004). Rough-Neural Computing-Techniques for Computing with Words, Springer, Berlin.10.1007/978-3-642-18859-6
Pancerz, K. and Suraj, Z. (2013). A rough set approach to information systems decomposition, Fundamenta Informaticae127(1–4): 257–272.10.3233/FI-2013-908
Pandu, S. (2020). MapReduce based improved quick reduct algorithm with granular refinement using vertical partitioning scheme, Knowledge-Based Systems189: 1872–7409.10.1016/j.knosys.2019.105104
Pedrycz, W. and Bargiela, A. (2002). Granular clustering: A granular signature of data, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics32(2): 212–224.10.1109/3477.990878
Pedrycz, W., Gacek, A. and Wang, X. (2015a). Clustering in augmented space of granular constraints: A study in knowledge-based clustering, Pattern Recognition Letters67: 122–129.10.1016/j.patrec.2015.08.019
Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015b). Data description: A general framework of information granules, Knowledge-Based Systems80: 98–108.10.1016/j.knosys.2014.12.030
Pedrycz, W., Zhao, J., Jing, X. and Yan, Z. (2021). Network traffic classification for data fusion: A survey, Information Fusion72: 22–47.10.1016/j.inffus.2021.02.009
Peters, J. (2013). How near are Zdzisław Pawlak’s paintings? Study of merotopic distances between digital picture regions-of-interest, in A. Skowron and Z. Suraj (Eds), Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library, Vol 42, Springer, Berlin/Heidelberg, pp. 545–568.
Peters, J. (2020). Computational geometry, topology and physics of visual scenes, in J.F. Peters (Ed.), Computational Geometry, Topology and Physics of Digital Images with Applications, Springer, Cham, pp. 1–85.10.1007/978-3-030-22192-8_1
Peters, J.F., Skowron, A. and Suraj, Z. (2000). An application of rough set methods in control design, Fundamenta Informaticae43(1–4): 269–290.10.3233/FI-2000-43123414
Peters, J.F., Ziaei, K., Ramanna, S. and Ehikioya, S.A. (1998). Adaptive fuzzy rough approximate time controller design methodology: Concepts, Petri net model and application, IEEE International Conference on Systems, Man, and Cybernetics, San Diego, USA, Vol. 3, pp. 2101–2106.
Pierzchała, D. (2014). Application of ontology and rough set theory to information sharing in multi-resolution combat, in J. Sobecki et al. (Eds), Advanced Approaches to Intelligent Information and Database Systems, Springer, Cham, pp. 193–203.10.1007/978-3-319-05503-9_19
Pięta, P., Szmuc, T. and Kluza, K. (2019). Comparative overview of rough set toolkit systems for data analysis, 3rd International Conference of Computational Methods in Engineering Science (CMES18), Kazimierz Dolny, Poland, pp. 1–7.
Polkowski, L. (2005). Rough-fuzzy-neurocomputing based on rough mereological calculus of granules, International Journal of Hybrid Intelligent Systems2(2): 91–108.10.3233/HIS-2005-2202
Polkowski, L. and Osmialowski, P. (2010). Navigation for mobile autonomous robots and their formations: An application of spatial reasoning induced from rough mereological geometry, in A. Barrera (Ed.), Mobile Robots Navigation, IntechOpen, London, DOI: 10.5772/8987, https://www.intechopen.com/chapters/10248.10.5772/8987
Polkowski, L. and Skowron, A. (1996). Rough mereological approach to knowledge-based distributed AI, 3rd World Congress on Expert Systems, Seoul, Korea, pp. 774–781.
Polkowski, L. and Skowron, A. (2000). Rough mereology in information systems with applications to qualitative spatial reasoning, Fundamenta Informaticae43(1–4): 291–320.10.3233/FI-2000-43123415
Prędki, B., Słowiński, R., Stefanowski, J., Susmaga, R. and Wilk, S. (1998). ROSE—Software implementation of the rough set theory, in A.S. Polkowski (Ed.), Rough Sets and Current Trends in Computing, Springer, Berlin, pp. 605–608.10.1007/3-540-69115-4_85
Prędki, B. and Wilk, S. (1999). Rough set based data exploration using ROSE system, in A.S.Z.W. Ras (Ed.), Foundations of Intelligent Systems, Springer, Berlin, pp. 172–180.10.1007/BFb0095102
Przyborowski, M., Tajmajer, T., Grad, L., Janusz, A., Biczyk, P. and Ślęzak, D. (2018). Toward machine learning on granulated data: A case of compact autoencoder-based representations of satellite images, 2018 IEEE International Conference on Big Data, Seattle, USA, pp. 2657–2662.
Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2013). Application of reduction of the set of conditional attributes in the process of global decision-making, Fundamenta Informaticae122(4): 327–355.10.3233/FI-2013-793
Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2014). A dispersed decision-making system—The use of negotiations during the dynamic generation of a systems structure, Information Sciences288(1): 194–219.10.1016/j.ins.2014.07.032
Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2016a). Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters, Applied Software Computing40: 603–615.10.1016/j.asoc.2015.12.016
Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2016b). The strength of coalition in a dispersed decision support system with negotiations, European Journal of Operational Research252(3): 947–968.10.1016/j.ejor.2016.02.008
Przybyła-Kasperek, M. and Wakulicz-Deja, A. (2017). Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system, International Journal of General Systems46(4): 1–28.10.1080/03081079.2017.1314276
Qiana, Y., Lianga, X., Lin, G., Guo, Q. and Liang, J. (2017). Local multigranulation decision-theoretic rough sets, International Journal of Approximate Reasoning82(6): 119–137.10.1016/j.ijar.2016.12.008
Qiong, C., Huang, M., Wang, H. and Xu, G. (2021). A feature discretization method based on fuzzy rough sets for high-resolution remote sensing big data under linear spectral model, IEEE Transactions on Fuzzy Systems: 1–1, (early access).10.1109/TFUZZ.2021.3058020
Qu, W., Kong, L., Wu, K., Tang, F. and Chen, G. (2019). Distributed fuzzy rough set for big data analysis in cloud computing, IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, pp. 109–116.
Quinlan, J.R. (1983). Learning efficient classification procedures and their application to chess end games, in R.S. Michalski et al. (Eds), Machine Learning: Symbolic Computation, Springer, Heidelberg, pp. 463–482.
Rajesh, T. and Malar, R.S.M. (2013). Rough set theory and feed forward neural network based brain tumor detection in magnetic resonance images, International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Chennai, India, pp. 240–244.
Riaz, S., Arshad, A. and Jiao, L. (2019). A semi-supervised CNN with fuzzy rough c-mean for image classification, IEEE Access7: 49641–49652.10.1109/ACCESS.2019.2910406
Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F.,Ślęzak, D. and Benítez, J.M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package RoughSets, Information Sciences287: 68–89.10.1016/j.ins.2014.07.029
Sachin, J. and Shubhangi, S. (2015). Knowledge acquisition using parallel rough set and MapReduce from big data, International Conference on Information Processing (ICIP), Pune, India, pp. 16–20.
Sakai, H., Nakata, M. and Watada, J. (2020). NIS—Apriori-based rule generation with three-way decisions and its application system in SQL, Information Sciences507: 755–771.10.1016/j.ins.2018.09.008
Shan, H., Xiaoning, J. and Jianxun, L. (2016). An assessment method for the impact of missing data in the rough set-based decision fusion, Intelligent Data Analysis20(6): 1267–1284.10.3233/IDA-150242
Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X. and Zheng, N. (2015). Transductive semi-supervised deep learning using min-max features, Proceedings of the European Conference on Computer Vision (ECCV), Cham, Switzerland, pp. 299–315.
Simiński, R. and Wakulicz-Deja, A. (2003). Decision units as a tool for rule base modeling and verification, in M.A. Klopotek et al. (Eds), Intelligent Information Processing and Web Mining, Springer, Berlin/Heidelberg, pp. 553–556.10.1007/978-3-540-36562-4_60
Skowron, A., Bazan, J. and Wojnarski, M. (2009). Interactive rough-granular computing in pattern recognition, in S. Chaudhury et al. (Eds.), Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, Vol. 5909, Springer, Berlin/Heidelberg, pp. 92–97.10.1007/978-3-642-11164-8_16
Skowron, A. and Dutta, S. (2017). From information systems to interactive information systems, in G. Wang et al. (Eds), Thriving Rough Sets, Studies in Computational Intelligence, Vol. 708, Springer, Cham, pp. 207–223.10.1007/978-3-319-54966-8_10
Skowron, A., Jankowski, A. and Dutta, S. (2016). Toward problem solving support based on big data and domain knowledge: Interactive granular computing and adaptive judgement, in N. Japkowicz and J. Stefanowski (Eds), Big Data Analysis: New Algorithms for a New Society, Studies in Big Data, Vol. 16, Springer, Cham, pp. 49–90.10.1007/978-3-319-26989-4_3
Skowron, A. and Nguyen, H.S. (1999). Boolean reasoning scheme with some applications in data mining, in J.M. Żytkow and J. Rauch (Eds), Principles of Data Mining and Knowledge Discovery, Springer, Berlin, pp. 107–115.10.1007/978-3-540-48247-5_12
Skowron, A., Ramanna, S. and Peters, J. (2006). Conflict analysis and information systems: A rough set approach, in G.Y. Wang et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 4062, Springer, Berlin/Heidelberg, pp. 233–240.10.1007/11795131_34
Skowron, A. and Stepaniuk, J. (2001). Information granules: Towards foundations of granular computing, International Journal of Intelligent Systems16(1): 57–85.10.1002/1098-111X(200101)16:1<;57::AID-INT6>3.0.CO;2-Y
Skowron, A. and Suraj, Z. (Eds) (2013a). Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Volume 1, Springer, Berlin/Heidelberg.10.1007/978-3-642-30341-8
Skowron, A. and Suraj, Z. (Eds) (2013b). Rough Sets and Intelligent Systems—Professor Zdzisław Pawlak in Memoriam, Volume 2, Springer, Berlin/Heidelberg.10.1007/978-3-642-30341-8
Skowron, A. and Wasilewski, P. (2011a). Information systems in modeling interactive computations on granules, Theoretical Computer Science412(42): 5939–5959.10.1016/j.tcs.2011.05.045
Skowron, A., Yuhua, Q., Xinyan, L., Qi, W., Liang, J., Bing, L., Yiyu, Y., Jianmin, M. and Dang, C. (2018). Local rough set: A solution to rough data analysis in big data, International Journal of Approximate Reasoning97: 38–63.10.1016/j.ijar.2018.01.008
Skowron, A. (2001). Approximate reasoning by agents in distributed environments, Proceedings of the 2nd Asia-Pacific Conference on Intelligent Agent Technology, Maebashi, Japan, pp. 28–39.
Ślęzak, D., Glick, R., Betliński, P. and Synak, P. (2018). A new approximate query engine based on intelligent capture and fast transformations of granulated data summaries, Journal of Intelligent Information Systems50: 385–414.10.1007/s10844-017-0471-6
Ślęzak, D., Synak, P., Toppin, G., Wróblewski, J. and Borkowski, J. (2012). Rough SQL—Semantics and execution, in S. Greco et al. (Eds), Advances in Computational Intelligence, Communications in Computer and Information Science, Vol. 298, Springer, Berlin/Heidelberg, pp. 570–579.10.1007/978-3-642-31715-6_60
Ślęzak, D., Grzegorowski, M., Janusz, A., Kozielski, M., Nguyen, S.H., Sikora, M., Stawicki, S. and Wróbel, Ł. (2018). A framework for learning and embedding multi-sensor forecasting models into a decision support system: A case study of methane concentration in coal mines, Information Sciences451–452: 112–133.10.1016/j.ins.2018.04.026
Ślęzak, D., Synak, P., Wróblewski, J. and Toppin, G. (2010). Infobright analytic database engine using rough sets and granular computing, IEEE International Conference on Granular Computing, San Jose, USA, pp. 432–437.
Ślęzak, D., Wróblewski, J., Eastwood, V. and Synak, P. (2008). Brighthouse: An analytic data warehouse for ad-hoc queries, Proceedings of VLDB Endowment1(2): 1337–1345.10.14778/1454159.1454174
Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046
Sulaiman, S., Shamsuddin, S.M. and Abraham, A. (2009). Rough web caching, in A. Abraham et al. (Eds), Rough Set Theory: A True Landmark in Data Analysis, Studies in Computational Intelligence, Vol. 174, Springer, Berlin/Heidelberg, pp. 187–211.10.1007/978-3-540-89921-1_7
Sun, Y.Q., Wu, L.Y., Zeng, Y. (2019). A decision-making method for weapon demonstration based on fuzzy theory and Bayesian rough sets, ICMSS 2019: Proceedings of the 3rd International Conference on Management Engineering, Wuhan, China, p. 74–77.
Sun, L., Yin, T., Ding, W., Qian, Y. and Xu, J. (2021). feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy, IEEE Transactions on Fuzzy Systems: 1–1, (early access).10.1109/TFUZZ.2021.3053844
Suraj, Z., Grochowalski, P. and Bandyopadhyay, S. (2015). Optimization of backward fuzzy reasoning based on rule knowledge, Proceedings of the International Workshop on Concurrency, Specification and Programming, Rzeszów, Poland, pp. 177–186.
Tang, J., Wang, J. and Wu, C. (2019). Research progress on network public opinion based on rough sets from the big data perspective, IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, pp. 1074–1077.
Thuy, N.N. and Wongthanavasu, S. (2021). A novel feature selection method for high-dimensional mixed decision tables, IEEE Transactions on Neural Networks and Learning Systems: 1–14, (early access).10.1109/TNNLS.2020.304808033449885
Venkatraman, R. and Venkatraman, S. (2019). Big data infrastructure, Proceedings of the 3rd International Conference on Big Data and Internet of Things, BDIOT 2019, New York, USA, pp. 13–17.
Verbiest, N., Cornelis, C. and Herrera, F. (2013). OWA-FRPS: A prototype selection method based on ordered weighted average fuzzy rough set theory, in D. Ciucci et al. (Eds), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Vol 8170, Springer, Berlin/Heidelberg. pp. 180–190.10.1007/978-3-642-41218-9_19
Vluymans, S., Asfoor, H., Saeys, Y., Cornelis, Y., Tolentino, M., Teredesai, A. and De Cock, M. (2015). Distributed fuzzy rough prototype selection for big data regression, Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)/5th World Conference on Soft Computing (WConSC), Redmond, USA, pp. 1–6.
Vluymans, S., Cornelis, C., Herrera, F. and Saeys, Y. (2018a). Multi-label classification using a fuzzy rough neighborhood consensus, Information Sciences433–434(9): 96–114.10.1016/j.ins.2017.12.034
Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C. and Herrera, F. (2018b). Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: A fuzzy rough set approach, Knowledge and Information Systems56(1): 55–84.10.1007/s10115-017-1126-1
Wakulicz-Deja, A., Boryczka, M. and Paszek, P. (1998). Discretization of continuous attributes on decision system in mitochondrial encephalomyopathies, 1st International Conference, RSCTC’98, Warsaw, Poland, pp. 483–490.
Wakulicz-Deja, A., Nowak-Brzezińska, A. and Jach, T. (2011). Inference processes in decision support systems with incomplete knowledge, in J. Yao et al. (Eds), Rough Sets and Knowledge Technology, Springer, Berlin/Heidelberg, pp. 616–625.10.1007/978-3-642-24425-4_78
Wakulicz-Deja, A., Nowak-Brzezińska, A. and Przybyła-Kasperek, M. (2013). Complex decision systems and conflicts analysis problem, Fundamenta Informaticae127(1–4): 341–356.10.3233/FI-2013-913
Wakulicz-Deja, A. and Przybyła-Kasperek, M. (2016). Pawlak’s conflict model: Directions of development, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, pp. 191–197.
Wan, R. and Li, Y. (2019). Clustering data stream with rough set, ICCPR’19: Proceedings of the 8th International Conference on Computing and Pattern Recognition, Beijing, China, pp. 52–56.
Wang, G., Li, T., Zhang, P., Huang, Q. and Chen, H. (2021). Double-local rough sets for efficient data mining, Information Sciences571(2–3): 475–498.10.1016/j.ins.2021.05.007
Wang, S., Li, T., Luo, C. and Fujita, H. (2016a). Efficient updating rough approximations with multidimensional variation of ordered data, Information Sciences372(7): 690–708.10.1016/j.ins.2016.08.044
Wang, X., Wang, L., Li, Y., Wang, B., Hei, X. and Cao, Z. (2016b). A quick algorithm for rule acquisition based on distributed domputing, IEEE International Conference on Smart Cloud, New York, USA, pp. 278–281.10.1109/SmartCloud.2016.27
Watt, J., Borhani, R. and Katsaggelos, A.K. (2016). Machine Learning Refined: Foundations, Algorithms, and Applications, Cambridge University Press, Cambridge.10.1017/CBO9781316402276
Wilkinson, M., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L.O., Bourne, P., Bouwman, J., Brookes, A., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C., Finkers, R. and Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship, Scientific Data3: 1–9, Article 160018.10.1038/sdata.2016.18479217526978244
Wnuk, M., Stawicki, S. and Ślęzak, D. (2020). Reinventing infobright’s concept of rough calculations on granulated tables for the purpose of accelerating modern data processing frameworks, IEEE International Conference on Big Data (Big Data), Atlanta, USA, pp. 5405–5412.
Wu, W.-Z. and Leung, Y. (2011). Theory and applications of granular labelled partitions in multi-scale decision tables, Information Sciences181(18): 3878–3897.10.1016/j.ins.2011.04.047
Wu, H.S.P. and Prasad S. (2018). Semi-supervised deep learning using pseudo labels for hyperspectral image classification, IEEE Transactions on Image Processing27(3): 1259–1270.10.1109/TIP.2017.277283629990156
Xia, S., Zhang, Z., Li, W., Wang, G., Giem, E. and Chen, Z. (2020). GBNRS: A novel rough set algorithm for fast adaptive attribute reduction in classification, IEEE Transactions on Knowledge and Data Engineering: 1–1, (early access).10.1109/TKDE.2020.2997039
Xiaoguang, Y., Qisong, Z. and Guojun, S. (2018). Research on classification of LBS service facilities based on rough sets neural network, Chinese Control and Decision Conference (CCDC), Shenyang, China, pp. 2843–2848.
Xie H., Hu, X., Peng, Z., Yao, X. and Chen, Y. (2018). A method of electricity consumption behavior analysis based on rough set fuzzy clustering, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, pp. 1–5.
Xu, W. and Yu, J. (2017). A novel approach to information fusion in multi-source datasets: A granular computing viewpoint, Information Sciences378(C): 410–423.10.1016/j.ins.2016.04.009
Yang, X., Li, T., Dun, D.L., Chen, H. and Luo, C. (2017). A unified framework of dynamic three-way probabilistic rough sets, Information Sciences420(C): 126–147.10.1016/j.ins.2017.08.053
Yao, Y. (2007). Decision-theoretic rough set models, in J. Yao et al. (Eds), Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 4481, Springer, Berlin/Heidelberg, pp. 1–12.10.1007/978-3-540-72458-2_1
Yap, C.E. and Kim, M.H. (2013). Instance-based ontology matching with rough set features selection, International Conference on IT Convergence and Security (ICITCS), Macao, China, pp. 1–4.
Yeganejou, M. and Dick, S. (2018). Classification via deep fuzzy c-means clustering, IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, Rio de Janeiro, Brazil, pp. 1–6.
Yuan, Z., Chen, H., Xie, P., Zhang, P., Liu, J. and Li, T. (2021). Attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and new directions, Applied Soft Computing107(2): 107353.10.1016/j.asoc.2021.107353
Yun, S. (2014). Research of big data analysis on rough set and electromagnetism-like mechanism algorithm, IEEE International Conference on Computer and Information Technology, Xi’an, China, pp. 923–926.
Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems90(2): 111–127.10.1016/S0165-0114(97)00077-8
Zhang, C., Li, D., Kang, X., Song, D., Kumar, A. and Said, B. (2020). Neutrosophic fusion of rough set theory: An overview, Computers in Industry115: 103117.10.1016/j.compind.2019.07.007
Zhang, J., Li, T. and Pan, Y. (2012). Parallel rough set based knowledge acquisition using MapReduce from big data, BigMine’12: Proceedings of the 1st International Workshop on Big Data, Beijing, China, pp 20–27.10.1145/2351316.2351320
Zhao, R., Wang, Y., Liu, Q., Dong, D. and Li, C. (2020). Knowledge acquisition model for stability situation judgement used in crowd evacuation, 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, pp. 510–514.
Zhou, C. and Lin, Z. (2018). Study on fraud detection of telecom industry based on rough set, IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, pp. 15–19.