Badouel, E., Bernardinello, L. and Darondeau, P. (1995). Polynomial algorithms for the synthesis of bounded nets, in P.D. Mosses et al. (Eds), TAPSOFT’95: Theory and Practice of Software Development, Springer, Berlin, pp. 364–378.10.1007/3-540-59293-8_207
Barkalov, A., Titarenko, L. and Mielcarek, K. (2018). Hardware reduction for lut–based mealy FSMs, International Journal of Applied Mathematics and Computer Science28(3): 595–607, DOI: 10.2478/amcs-2018-0046.10.2478/amcs-2018-0046
Best, E. and Wimmel, H. (2000). Reducing k-safe Petri nets to pomset-equivalent 1-safe petri nets, in M. Nielsen and D. Simpson (Eds), Application and Theory of Petri Nets 2000, Springer, Berlin, pp. 63–82.10.1007/3-540-44988-4_6
Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L. and Yakovlev, A. (2008). A symbolic algorithm for the synthesis of bounded Petri nets, in K.M. van Hee and R. Valk (Eds), Applications and Theory of Petri Nets, Springer, Berlin, pp. 92–111.10.1007/978-3-540-68746-7_10
Chen, C., Liu, Z., Wan, S., Luan, J. and Pei, Q. (2020). Traffic flow prediction based on deep learning in internet of vehicles, IEEE Transactions on Intelligent Transportation Systems22(6): 3776–3789.10.1109/TITS.2020.3025856
Cheng, A., Esparza, J. and Palsberg, J. (1995). Complexity results for 1-safe nets, Theoretical Computer Science147(1–2): 117–136.10.1016/0304-3975(94)00231-7
Clempner, J. (2014). An analytical method for well-formed workflow/Petri net verification of classical soundness, International Journal of Applied Mathematics and Computer Science24(4): 931–939, DOI: 10.2478/amcs-2014-0068.10.2478/amcs-2014-0068
Cortadella, J., Kishinevsky, M., Lavagno, L. and Yakovlev, A. (1998). Deriving Petri nets from finite transition systems, IEEE Transactions on Computers47(8): 859–882.10.1109/12.707587
Dey, N., Ashour, A.S., Shi, F., Fong, S.J. and Tavares, J.M.R.S. (2018). Medical cyber-physical systems: A survey, Journal of Medical Systems42(4) 1–13, Article no. 74.
Dideban, A. and Alla, H. (2008). Reduction of constraints for controller synthesis based on safe Petri Nets, Automatica44(7): 1697–1706.10.1016/j.automatica.2007.10.031
Du, N., Hu, H. and Zhou, M. (2020). Robust deadlock avoidance and control of automated manufacturing systems with assembly operations using Petri nets, IEEE Transactions on Automation Science and Engineering17(4): 1961–1975.10.1109/TASE.2020.2983672
Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P. and Niksic, F. (2014). An SMT-based approach to coverability analysis, in A. Biere and R. Bloem (Eds), Computer Aided Verification, Springer, Cham, pp. 603–619.10.1007/978-3-319-08867-9_40
Fabre, E. (2006). On the construction of pullbacks for safe Petri nets, in S. Donatelli and P. S. Thiagarajan (Eds), Petri Nets and Other Models of Concurrency, ICATPN 2006, Springer, Berlin, pp. 166–180.10.1007/11767589_10
Feng, Y., Xing, K., Zhou, M., Wang, X. and Liu, H. (2020). Robust deadlock prevention for automated manufacturing systems with unreliable resources by using general Petri nets, IEEE Transactions on Systems, Man, and Cybernetics: Systems50(10): 3515–3527.10.1109/TSMC.2018.2884316
Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J. and Olderog, E.-R. (2020). AdamMC: A model checker for Petri nets with transits against flow-LTL, in S.K. Lahiri and C. Wang (Eds), Computer Aided Verification, Springer, Cham, pp. 64–76.10.1007/978-3-030-53291-8_5
Girault, C. and Valk, R. (2003). Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications, Springer, Berlin.10.1007/978-3-662-05324-9
Giua, A. and Xie, X. (2005). Control of safe ordinary Petri nets using unfolding, Discrete Event Dynamic Systems15(4): 349–373.10.1007/s10626-005-4057-z
Guo, H., Man, K.L., Ren, Q., Huang, Q., Hahanov, V., Litvinova, E. and Chumachenko, S. (2017). FPGA implementation of VLC communication technology, 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan, pp. 586–590.
Huang, B., Zhou, M., Wang, C., Abusorrah, A. and Al-Turki, Y. (2021). Deadlock-free supervisor design for robotic manufacturing cells with uncontrollable and unobservable events, IEEE/CAA Journal of Automatica Sinica8(3): 597–605.10.1109/JAS.2020.1003207
Huang, D., Deng, Z., Wan, S., Mi, B. and Liu, Y. (2018). Identification and prediction of urban traffic congestion via cyber-physical link optimization, IEEE Access6: 63268–63278.10.1109/ACCESS.2018.2875239
Jasiul, B., Szpyrka, M. and Śliwa, J. (2015). Formal specification of malware models in the form of colored Petri nets, in J.J.J.H. Park et al. (Eds), Computer Science and Its Applications, Springer, Berlin, pp. 475–482.10.1007/978-3-662-45402-2_71
Jiang, Z., Li, Z., Wu, N. and Zhou, M. (2018). A Petri net approach to fault diagnosis and restoration for power transmission systems to avoid the output interruption of substations, IEEE Systems Journal12(3): 2566–2576.10.1109/JSYST.2017.2682185
Kaid, H., Al-Ahmari, A., Li, Z. and Davidrajuh, R. (2020). Automatic supervisory controller for deadlock control in reconfigurable manufacturing systems with dynamic changes, Applied Sciences10(15): 1–34, Article no. 5270.
Koh, I. and DiCesare, F. (1990). Transformation methods for generalized Petri nets and their applications to flexible manufacturing systems, Rensselaer’s 2nd International Conference on Computer Integrated Manufacturing, Troy, USA, pp. 364–371.
Li, B., Khlif-Bouassida, M. and Toguyéni, A. (2018). On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets using verifier nets, International Journal of Applied Mathematics and Computer Science28(2): 269–281, DOI: 10.2478/amcs-2018-0019.10.2478/amcs-2018-0019
Lizarraga, A., Begovich, O. and Ramírez, A. (2020). Fault diagnosis for a three-wheel omidirectional vehicle: A geometric approach, 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, USA, pp. 1–6.
Luo, J., Liu, Z., Wang, S. and Xing, K. (2020). Robust deadlock avoidance policy for automated manufacturing system with multiple unreliable resources, IEEE/CAA Journal of Auto-matica Sinica7(3): 812–821.10.1109/JAS.2020.1003096
Martínez, J. and Silva, M. (1982). A simple and fast algorithm to obtain all invariants of a generalised Petri net, in C. Girault and W. Reisig (Eds), Application and Theory of Petri Nets, Springer, Berlin, pp. 301–310.10.1007/978-3-642-68353-4_47
Pan, L., Yang, B., Jiang, J. and Zhou, M. (2020). A time Petri Net with relaxed mixed semantics for schedulability analysis of flexible manufacturing systems, IEEE Access8: 46480–46492.10.1109/ACCESS.2020.2978101
Rajkumar, R.R., Lee, I., Sha, L. and Stankovic, J. (2010). Cyber-physical systems: The next computing revolution, 47th Design Automation Conference, DAC’10, Anaheim, USA, p. 731.
Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I. and Lopez-Mellado, E. (2007). Online fault diagnosis of discrete event systems: A Petri net-based approach, IEEE Transactions on Automation Science and Engineering4(1): 31–39.10.1109/TASE.2006.872120
Ran, N., Hao, J., He, Z. and Seatzu, C. (2018a). Diagnosability analysis of bounded Petri nets, IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, Vol. 1, pp. 1145–1148.10.1109/ETFA.2018.8502652
Ran, N., Su, H., Giua, A. and Seatzu, C. (2018b). Codiagnosability analysis of bounded Petri nets, IEEE Transactions on Automatic Control63(4): 1192–1199.10.1109/TAC.2017.2742659
Ran, N., Su, H. and Wang, S. (2017). An improved approach to test diagnosability of bounded petri nets, IEEE/CAA Journal of Automatica Sinica4(2): 297–303.10.1109/JAS.2017.7510406
Shih, C.-S., Chou, J.-J., Reijers, N. and Kuo, T.-W. (2016). Designing CPS/IoT applications for smart buildings and cities, IET Cyber-Physical Systems: Theory Applications1(1): 3–12.10.1049/iet-cps.2016.0025
White, A., Karimoddini, A. and Karimadini, M. (2020). Resilient fault diagnosis under imperfect observations—A need for Industry 4.0 era, IEEE/CAA Journal of Automatica Sinica7(5): 1279–1288.
Wiśniewski, R., Barkalov, A., Titarenko, L. and Halang, W. (2011). Design of microprogrammed controllers to be implemented in FPGAs, International Journal of Applied Mathematics and Computer Science21(2): 401–412, DOI: 10.2478/v10006-011-0030-1.10.2478/v10006-011-0030-1
Wiśniewski, R., Bazydło, G., Szcześniak, P. and Wojnakowski, M. (2019a). Petri net-based specification of cyber-physical systems oriented to control direct matrix converters with space vector modulation, IEEE Access7: 23407–23420.10.1109/ACCESS.2019.2899316
Wiśniewski, R., Karatkevich, A., Adamski, M., Costa, A. and Gomes, L. (2018). Prototyping of concurrent control systems with application of Petri nets and comparability graphs, IEEE Transactions on Control Systems Technology26(2): 575–586.10.1109/TCST.2017.2692204
Wisniewski, R., Grobelna, I. and Karatkevich, A. (2020). Determinism in cyber-physical systems specified by interpreted Petri nets, Sensors20(19): 1–22, Article no. 5565.
Wiśniewski, R., Wiśniewska, M. and Jarnut, M. (2019b). C-exact hypergraphs in concurrency and sequentiality analyses of cyber-physical systems specified by safe Petri nets, IEEE Access7: 13510–13522.10.1109/ACCESS.2019.2893284
Xia, C. and Li, C. (2021). Property preservation of Petri synthesis net based representation for embedded systems, IEEE/CAA Journal of Automatica Sinica8(4): 905–915.10.1109/JAS.2020.1003003
Yang, F., Wu, N., Qiao, Y., Zhou, M., Su, R. and Qu, T. (2018). Petri net-based efficient determination of optimal schedules for transport-dominant single-arm multi-cluster tools, IEEE Access6: 355–365.10.1109/ACCESS.2017.2763778
Zaitsev, D.A., Shmeleva, T.R. and Groote, J.F. (2019). Verification of hypertorus communication grids by infinite Petri nets and process algebra, IEEE/CAA Journal of Auto-matica Sinica6(3): 733–742.10.1109/JAS.2019.1911486
Zhang, Y., Qiu, M., Tsai, C.-W., Hassan, M.M. and Alamri, A. (2017). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data, IEEE Systems Journal11(1): 88–95.10.1109/JSYST.2015.2460747
Zhu, Q., Zhou, M., Qiao, Y. and Wu, N. (2018). Petri net modeling and scheduling of a close-down process for time-constrained single-arm cluster tools, IEEE Transactions on Systems, Man, and Cybernetics: Systems48(3): 389–400.10.1109/TSMC.2016.2598303
Zurawski, R. and Zhou, M. (1994). Petri nets and industrial applications: A tutorial, IEEE Transactions on Industrial Electronics41(6): 567–583.10.1109/41.334574