Bartecki, K. (2020). Approximate state-space and transfer function models for 2×2 linear hyperbolic systems with collocated boundary inputs, International Journal of Applied Mathematics and Computer Science 30(3): 475–491, DOI: 10.34768/amcs-2020-0035.
Cheng, A. and Morris, K. (2003). Well-posedness of boundary control systems, SIAM Journal on Control and Optimization 42(4): 1244–1265.10.1137/S0363012902384916
Curtain, R. and Oostveen, J. (1997). Bilinear transformations between discrete-time and continuous-time infinite-dimensional systems, Proceedings of the International Conference on Methods and Models in Automation and Robotics, MMAR 1997, Międzyzdroje, Poland, pp. 861–870.
Curtain, R. and Zwart, H. (2020). Introduction to Infinite-Dimensional Systems Theory: A State-Space Approach, Springer, New York.10.1007/978-1-0716-0590-5
Demetriou, M. (2013). Disturbance-decoupling observers for a class of second order distributed parameter systems, Proceedings of the 2013 American Control Conference, ACC 2013, Washington, USA, pp. 1302–1307.
Demetriou, M. and Rosen, I. (2005). Unknown input observers for a class of distributed parameter systems, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC/ECC 2005, Seville, Spain, pp. 3874–3879.
Emirsajłow, Z. (2012). Infinite-dimensional Sylvester equations: Basic theory and applications to observer design, International Journal of Applied Mathematics and Computer Scienes 22(2): 245–257, DOI: 10.2478/v10006-012-0018-5.10.2478/v10006-012-0018-5
Emirsajłow, Z. (2020). Boundary observers for boundary control systems, in A. Bartoszewicz et al. (Eds), Advanced, Contemporary Control, Springer, Cham, pp. 92–104.10.1007/978-3-030-50936-1_8
Emirsajłow, Z. (2021). Output observers for linear infinite-dimensional control systems, in P. Kulczycki et al. (Eds), Automatic Control, Robotics and Information Processing, Springer, Cham, pp. 67–92.10.1007/978-3-030-48587-0_3
Emirsajłow, Z. and Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: Tutorial, European Journal of Control 7(1): 1–23.10.1016/S0947-3580(00)70908-3
Grabowski, P. (2021). Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems, International Journal of Applied Mathematics and Computer Science 31(2): 195–218, DOI: 10.34768/amcs-2021-0014.
Guo, B. and Zwart, H. (2006). On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform, Integral Equations and Operator Theory 54(3): 349–383.10.1007/s00020-003-1350-9
Havu, V. and Malinen, J. (2007). The Cayley transform as a time discretization scheme, Integral Equations and Operator Theory 28(7): 825–851.10.1080/01630560701493321
Hidayat, Z., Babuska, R., De Schutter, B. and Nunez, A. (2011). Observers for linear distributed-parameter systems: A survey, Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments, Montreal, Canada, pp. 166–171.
Huang, J., Liu, A. and Chen, A. (2016). Spectra of 2×2 upper triangular operator matrices, Filomat 30(13): 3587–3599, DOI: 10.2298/FIL1613587H.10.2298/FIL1613587H
Kythe, P. (2011). Green Functions and Linear Differential Equations, Theory, Applications and Computations, Chapman & Hall/CRC, Boca Raton.10.1201/b10494
Mitkowski, W., Bauer, W. and Zagórowska, M. (2017). Discrete-time feedback stabilization, Archives of Control Sciences 27(2): 309–322.10.1515/acsc-2017-0020
Ober, R. and Montgomery-Smith, S. (1990). Bilnear transformation of infinite-dimensional state-space systems and balanced realizations of nonrational transfer functions, SIAM Journal on Control and Optimization 28(2): 438–465.10.1137/0328024
Oprzędkiewicz, K. and Mitkowski, W. (2018). A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process, International Journal of Applied Mathematics and Computer Science 28(4): 649–659, DOI: 10.2478/amcs-2018-0050.10.2478/amcs-2018-0050
Smyshlyaev, A. and Krstic, M. (2005). Backstepping observer for a class of parabolic PDEs, Systems and Control Letters 54(7): 613–625.10.1016/j.sysconle.2004.11.001
Vries, D., Keesman, K. and Zwart, H. (2010). Luenberger boundary observer synthesis for Sturm–Liouville systems, International Journal of Control 83(7): 1503–1514.10.1080/00207179.2010.481768