Have a personal or library account? Click to login

An effective data reduction model for machine emergency state detection from big data tree topology structures

Open Access
|Dec 2021

References

  1. Abdi, H. and Williams, L.J. (2010). Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2(4): 433–459.10.1002/wics.101
  2. Bansal, K. and Bansal, M. (2016). Data clustering and visualization based various machine learning techniques, International Journal of Advanced Research in Computer Science 7(6): 124–128.
  3. Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics 11(1): 1–11.10.1186/1471-2105-11-567299853021087509
  4. Basora, L., Olive, X. and Dubot, T. (2019). Recent advances in anomaly detection methods applied to aviation, Aerospace 6(11): 117.10.3390/aerospace6110117
  5. Cooper, C., Wang, P., Zhang, J., Gao, R.X., Roney, T., Ragai, I. and Shaffer, D. (2020a). Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals, Procedia Manufacturing 49: 105–111.10.1016/j.promfg.2020.07.004
  6. Cooper, C., Zhang, J., Gao, R.X., Wang, P. and Ragai, I. (2020b). Anomaly detection in milling tools using acoustic signals and generative adversarial networks, Procedia Manufacturing 48: 372–378.10.1016/j.promfg.2020.05.059
  7. Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, KDD’96 Proceedings, Portland, USA, pp. 226–231.
  8. Filter, L.V. and Filter, P. (2014). Seven techniques for dimensionality reduction, Technical report, KNIME, Zurich, https://www.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf.
  9. Goldin, D.Q. and Kanellakis, P.C. (1995). On similarity queries for time-series data: Constraint specification and implementation, International Conference on Principles and Practice of Constraint Programming, Cassis, France, pp. 137–153.
  10. Hankerson, D., Hoffman, D., Leonard, D. and Linder, C. (2000). Coding Theory and Cryptography: The Essentials, CRC Press, Boca Raton.10.1201/b16944
  11. Hyndman, R.J., Wang, E. and Laptev, N. (2015). Large-scale unusual time series detection, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, USA, pp. 1616–1619.
  12. Kamat, P. and Sugandhi, R. (2020). Anomaly detection for predictive maintenance in industry 4.0-a survey, E3S Web of Conferences 170: 02007.
  13. Liang, Y., Wang, S., Li, W. and Lu, X. (2019). Data-driven anomaly diagnosis for machining processes, Engineering 5(4): 646–652.10.1016/j.eng.2019.03.012
  14. Mühlbauer, M., Würschinger, H., Polzer, D., Ju, S. and Hanenkamp, N. (2020). Automated data labeling and anomaly detection using airborne sound analysis, Procedia CIRP 93: 1247–1252.10.1016/j.procir.2020.04.121
  15. Pathria, R. and Beale, P.D. (2011). Statistical Mechanics, Academic Press/Elsevier, Cambridge.
  16. Schleinkofer, U., Klöpfer, K., Schneider, M. and Bauernhansl, T. (2019). Cyber-physical systems as part of frugal manufacturing systems, Procedia CIRP 81: 264–269.10.1016/j.procir.2019.03.046
  17. Siboni, S. and Cohen, A. (2020). Anomaly detection for individual sequences with applications in identifying malicious tools, Entropy 22(6): 649.10.3390/e22060649751718333286421
  18. ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y. and Khan, S.U. (2016). Big data reduction methods: A survey, Data Science and Engineering 1(4): 265–284.10.1007/s41019-016-0022-0
  19. Yao, Y.-C., Chen, Y.-H., Liu, C.-H. and Shih, W.-P. (2019). Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm, International Journal of Advanced Manufacturing Technology 103(1): 297–309.10.1007/s00170-019-03551-2
  20. Żabiński, T., Mączka, T., Kluska, J., Madera, M. and Sęp, J. (2019). Condition monitoring in industry 4.0 production systems—The idea of computational intelligence methods application, Procedia CIRP 79: 63–67.
  21. Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H. and Chawla, N.V. (2019a). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 1409–1416.10.1609/aaai.v33i01.33011409
  22. Zhang, L., Elghazoly, S. and Tweedie, B. (2019b). Introducing AnomDB: An unsupervised anomaly detection method for CNC machine control data, Annual Conference of the Prognostics and Health Management Society, Scottsdale, USA.10.36001/phmconf.2019.v11i1.806
DOI: https://doi.org/10.34768/amcs-2021-0041 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 601 - 611
Submitted on: Jun 11, 2021
Accepted on: Oct 19, 2021
Published on: Dec 30, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Iaroslav Iaremko, Roman Senkerik, Roman Jasek, Petr Lukastik, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.