Abdi, H. and Williams, L.J. (2010). Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics2(4): 433–459.10.1002/wics.101
Bansal, K. and Bansal, M. (2016). Data clustering and visualization based various machine learning techniques, International Journal of Advanced Research in Computer Science7(6): 124–128.
Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics11(1): 1–11.10.1186/1471-2105-11-567299853021087509
Basora, L., Olive, X. and Dubot, T. (2019). Recent advances in anomaly detection methods applied to aviation, Aerospace6(11): 117.10.3390/aerospace6110117
Cooper, C., Zhang, J., Gao, R.X., Wang, P. and Ragai, I. (2020b). Anomaly detection in milling tools using acoustic signals and generative adversarial networks, Procedia Manufacturing48: 372–378.10.1016/j.promfg.2020.05.059
Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, KDD’96 Proceedings, Portland, USA, pp. 226–231.
Goldin, D.Q. and Kanellakis, P.C. (1995). On similarity queries for time-series data: Constraint specification and implementation, International Conference on Principles and Practice of Constraint Programming, Cassis, France, pp. 137–153.
Hyndman, R.J., Wang, E. and Laptev, N. (2015). Large-scale unusual time series detection, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, USA, pp. 1616–1619.
Mühlbauer, M., Würschinger, H., Polzer, D., Ju, S. and Hanenkamp, N. (2020). Automated data labeling and anomaly detection using airborne sound analysis, Procedia CIRP93: 1247–1252.10.1016/j.procir.2020.04.121
Schleinkofer, U., Klöpfer, K., Schneider, M. and Bauernhansl, T. (2019). Cyber-physical systems as part of frugal manufacturing systems, Procedia CIRP81: 264–269.10.1016/j.procir.2019.03.046
Siboni, S. and Cohen, A. (2020). Anomaly detection for individual sequences with applications in identifying malicious tools, Entropy22(6): 649.10.3390/e22060649751718333286421
ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y. and Khan, S.U. (2016). Big data reduction methods: A survey, Data Science and Engineering1(4): 265–284.10.1007/s41019-016-0022-0
Yao, Y.-C., Chen, Y.-H., Liu, C.-H. and Shih, W.-P. (2019). Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm, International Journal of Advanced Manufacturing Technology103(1): 297–309.10.1007/s00170-019-03551-2
Żabiński, T., Mączka, T., Kluska, J., Madera, M. and Sęp, J. (2019). Condition monitoring in industry 4.0 production systems—The idea of computational intelligence methods application, Procedia CIRP79: 63–67.
Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H. and Chawla, N.V. (2019a). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 1409–1416.10.1609/aaai.v33i01.33011409
Zhang, L., Elghazoly, S. and Tweedie, B. (2019b). Introducing AnomDB: An unsupervised anomaly detection method for CNC machine control data, Annual Conference of the Prognostics and Health Management Society, Scottsdale, USA.10.36001/phmconf.2019.v11i1.806