Basha, S.S., Dubey, S.R., Pulabaigari, V. and Mukherjee, S. (2020). Impact of fully connected layers on performance of convolutional neural networks for image classification, Neurocomputing378: 112–119.10.1016/j.neucom.2019.10.008
Bodyanskiy, Y.V. and Tyshchenko, O.K. (2019). A hybrid cascade neuro-fuzzy network with pools of extended neo-fuzzy neurons and its deep learning, International Journal of Applied Mathematics and Computer Science29(3): 477–488, DOI: 10.2478/amcs-2019-0035.10.2478/amcs-2019-0035
Carvalho, M. and Ludermir, T.B. (2006). Particle swarm optimization of feed-forward neural networks with weight decay, 6th International Conference on Hybrid Intelligent Systems (HIS’06), Rio de Janeiro, Brazil, pp. 5–5.
Chang, C.-H. (2015). Deep and shallow architecture of multilayer neural networks, IEEE Transactions on Neural Networks and Learning Systems26(10): 2477–2486.10.1109/TNNLS.2014.2387439
Chen, G. (2010). Simplified particle swarm optimization algorithm based on particles classification, 6th International Conference on Natural Computation, Yantai, China, Vol. 5, pp. 2701–2705.
Chen, M. (2008). Second generation particle swarm optimization, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp. 90–96.
Eberhart, R.C. and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization, Proceedings of the 2000 Congress on Evolutionary Computation, CEC00, La Jolla, USA, Vol. 1, pp. 84–88.
Gal, L., Botzheim, J. and Koczy, L.T. (2008). Improvements to the bacterial memetic algorithm used for fuzzy rule base extraction, IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Istanbul, Turkey, pp. 38–43.
Gál, L., Botzheim, J., Kóczy, L.T. and Ruano, A.E. (2009). Applying bacterial memetic algorithm for training feedforward and fuzzy flip-flop based neural networks, Joint 2009 International Fuzzy Systems Association World Congress and the European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, pp. 1833–1838.
Gál, L., Lovassy, R. and Kóczy, L.T. (2010). Function approximation performance of fuzzy neural networks based on frequently used fuzzy operations and a pair of new trigonometric norms, International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8.
Gniewek, L. and Kluska, J. (2004). Hardware implementation of fuzzy Petri net as a controller, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics34(3): 1315–1324.10.1109/TSMCB.2003.822956
Hirota, K. and Pedrycz, W. (1993). Neurocomputations with fuzzy flip-flops, Proceedings of International Conference on Neural Networks (IJCNN-93), Nagoya, Japan, Vol. 2, pp. 1867–1870.
Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceedings of the ICNN’95 International Conference on Neural Networks, Perth, Australia, Vol. 4, pp. 1942–1948.
Kowalski, P.A. (2013). Evolutionary strategy for the fuzzy flip-flop neural networks supervised learning procedure, International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, pp. 294–305.
Lillicrap, T.P., Cownden, D., Tweed, D.B. and Akerman, C.J. (2016). Random synaptic feedback weights support error backpropagation for deep learning, Nature Communications7(1): 1–10.10.1038/ncomms13276
Lovassy, R., Kóczy, L.T. and Gál, L. (2008a). Applicability of fuzzy flip-flops in the implementation of neural networks, 9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics, CINTI 2008, Budapest, Hungary, pp. 333–344.
Lovassy, R., Koczy, L.T. and Gal, L. (2008b). Multilayer perceptron implemented by fuzzy flip-flops, IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong, Kong, China, pp. 1683–1688.10.1109/FUZZY.2008.4630597
Lovassy, R., Zavala, A.H., Gál, L., Nieto, O.C., Kóczy, L.T. and Batyrshin, I. (2010). Hardware implementation of fuzzy flip-flops based on Łukasiewicz norms, 9th WSEAS International Conference on Applied Computer and Applied Computational Science, Genova, Italy, pp. 196–201.
Łukasik, S. and Kowalski, P.A. (2014). Fully informed swarm optimization algorithms: Basic concepts, variants and experimental evaluation, Federated Conference on Computer Science and Information Systems, Warsaw, Poland, pp. 155–161.
Ozawa, K., Hirota, K. and Koczy, L.T. (1996). Fuzzy flip-flop, in M.Y. Patyra and D.M. Mlynek (Eds), Fuzzy Logic: Implementation and Applications, Wiley/BG Teunbner Publ., pp. 197–236.10.1007/978-3-322-88955-3_7
Ozawa, K., Hirota, K., Koczy, L.T. and Omori, K. (1991). Algebraic fuzzy flip-flop circuits, Fuzzy Sets and Systems39(2): 215–226.10.1016/0165-0114(91)90214-B
Pu, X., Fang, Z. and Liu, Y. (2007). Multilayer perceptron networks training using particle swarm optimization with minimum velocity constraints, in D. Liu et al. (Eds), Advances in Neural Networks, Lecture Notes in Computer Science, Vol. 493, Springer, Berlin/Heidelberg, pp. 237–245.10.1007/978-3-540-72395-0_31
Rakitianskaia, A. and Engelbrecht, A. (2015). Saturation in PSO neural network training: Good or evil?, IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, pp. 125–132.
Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science31(2): 303–319, DOI: 10.34768/amcs-2021-0021.
Zavala, A.H., Nieto, O.C., Batyrshin, I. and Vargas, L.V. (2009). VLSI implementation of a module for realization of basic t-norms on fuzzy hardware, IEEE International Conference on Fuzzy Systems, Jeju, South Korea, pp. 655–659.