Have a personal or library account? Click to login

New transitivity of Atanassov’s intuitionistic fuzzy sets in a decision making model

Open Access
|Dec 2021

References

  1. Asiain, M.J., Bustince, H., Mesiar, R., Kolesarova, A. and Takac, Z. (2018). Negations with respect to admissible orders in the interval-valued fuzzy set theory, IEEE Transactions on Fuzzy Systems 26(2): 556–568.10.1109/TFUZZ.2017.2686372
  2. Atanassov, K.T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.10.1007/978-3-7908-1870-3
  3. Atanassov, K.T. (2008). On the intuitionistic fuzzy implications and negations, in P. Chountas et al. (Eds), Intelligent Techniques and Tools for Novel System Architectures, Springer, Berlin, pp. 381–394.10.1007/978-3-540-77623-9_22
  4. Atanassov, K.T. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Heidelberg.10.1007/978-3-642-29127-2
  5. Atanassov, K.T. (2016). Mathematics of intuitionistic fuzzy sets, in C. Kahraman et al. (Eds), Fuzzy Logic in Its 50th Year: New Developments, Directions and Challenges, Springer, Berlin, pp. 61–86.10.1007/978-3-319-31093-0_3
  6. Beliakov, G., Bustince Sola, H., James, S., Calvo, T. and Fernandez, J. (2012). Aggregation for Atanassov’s intuitionistic and interval valued fuzzy sets: The median operator, IEEE Transactions on Fuzzy Systems 20(3): 487–498.10.1109/TFUZZ.2011.2177271
  7. Bentkowska, U. (2018). New types of aggregation functions for interval-valued fuzzy setting and preservation of pos-B and nec-B-transitivity in decision making problems, Information Sciences 424: 385–399.10.1016/j.ins.2017.10.025
  8. Bentkowska, U., Bustince, H., Jurio, A., Pagola, M. and Pekala, B. (2015). Decision making with an interval-valued fuzzy preference relation and admissible orders, Applied Soft Computing 35: 792–801.10.1016/j.asoc.2015.03.012
  9. Burillo, P. and Bustince, H. (1995). Intuitionistic fuzzy relations: Effect of Atanassov’s operators on the properties of the intuitionistic fuzzy relation, Mathware and Soft Computing 2(2): 117–148.
  10. Burillo, P. and Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Systems 78(3): 305–316.10.1016/0165-0114(96)84611-2
  11. Deschrijiver, G., Cornelis, C. and Kerre, E.E. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12(1): 45–61.10.1109/TFUZZ.2003.822678
  12. Deschrijver, G. and Kerre, E. (2003). On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133(2): 227–235.10.1016/S0165-0114(02)00127-6
  13. Drygaś, P. (2011). Preservation of intuitionistic fuzzy preference relations, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Aix-les-Bains, France, pp. 554–558.
  14. Dubois, D., Godo, L. and Prade, H. (2014). Weighted logics for artificial intelligence an introductory discussion, International Journal of Approximate Reasoning 55(9): 1819–1829.10.1016/j.ijar.2014.08.002
  15. Dubois, D. and Prade, H. (1988). Possibility Theory, Plenum Press, New York.
  16. Dubois, D. and Prade, H. (2012). Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets and Systems 192: 3–24.10.1016/j.fss.2010.11.007
  17. Dudziak, U. and Pękala, B. (2011). Intuitionistic fuzzy preference relations, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Aix-les-Bains, France, pp. 529–536.
  18. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
  19. Pękala, B. (2009). Preservation of properties of interval-valued fuzzy relations, Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and the 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, pp. 1206–1210.
  20. Pękala, B. (2019). Uncertainty Data in Interval-Valued Fuzzy Set Theory: Properties, Algorithms and Applications, Springer, Cham.10.1007/978-3-319-93910-0
  21. Pękala, B., Bentkowska, U., Bustince, H., Fernandez, J. and Galar, M. (2015). Operators on intuitionistic fuzzy relations, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, pp. 1–8.
  22. Pękala, B., Bentkowska, U. and De Baets, B. (2016). On comparability relations in the class of interval-valued fuzzy relations, Tatra Mountains Mathematical Publications 66(1): 91–101.10.1515/tmmp-2016-0023
  23. Pękala, B., Szmidt, E. and Kacprzyk, J. (2018). Group decision support under intuitionistic fuzzy relations: The role of weak transitivity and consistency, International Journal of Intelligent Systems 33(10): 2078–2095.10.1002/int.21923
  24. Pradhan, R. and Pal, M. (2017). Transitive and strongly transitive intuitionistic fuzzy matrices, Annals of Fuzzy Mathematics and Informatics 13(4): 485–498.10.30948/afmi.2017.13.4.485
  25. Rutkowski, T., Łapa, K. and Nielek, R. (2019). On explainable fuzzy recommenders and their performance evaluation, International Journal of Applied Mathematics and Computer Science 29(3): 595–610, DOI: 10.2478/amcs-2019-0044.10.2478/amcs-2019-0044
  26. Saminger, S., Mesiar, R. and Bodenhoffer, U. (2002). Domination of aggregation operators and preservation of transitivity, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(1): 11–35.10.1142/S0218488502001806
  27. Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets, Springer, Cham.10.1007/978-3-319-01640-5
  28. Szmidt, E. and Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets, Fuzzy Sets and Systems 114(3): 505–518.10.1016/S0165-0114(98)00244-9
  29. Szmidt, E. and Kacprzyk, J. (2006). Distances between intuitionistic fuzzy sets: Straightforward approaches may not work, 3rd International IEEE Conference on Intelligent Systems, IS06, London, UK, pp. 716–721.
  30. Szmidt, E. and Kacprzyk, J. (2009). Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives, in E. Rakus-Andersson et al. (Eds), Recent Advances in Decision Making, Springer, Berlin, pp. 7–19.10.1007/978-3-642-02187-9_2
  31. Szmidt, E. and Kacprzyk, J. (2017). A perspective on differences between Atanassov’s intuitionistic fuzzy sets and interval-valued fuzzy sets, Studies in Computational Intelligence 671: 221–237, DOI: 10.1007/978-3-319-47557-8_13.10.1007/978-3-319-47557-8_13
  32. Taylor, A.D. (2005). Social Choice and the Mathematics of Manipulation, Cambridge University Press, New York.10.1017/CBO9780511614316
  33. Xu, Y., Wanga, H. and Yu, D. (2014). Cover image weak transitivity of interval-valued fuzzy relations, Knowledge-Based Systems 63: 24–32.10.1016/j.knosys.2014.03.003
  34. Xu, Z. (2007). Approaches to multiple attribute decision making with intuitionistic fuzzy preference information, Systems Engineering—Theory and Practice 27(11): 62–71.10.1016/S1874-8651(08)60069-1
  35. Xu, Z. and Yager, R.R. (2009). Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group, Fuzzy Optimization and Decision Making 8(2): 123–139, DOI: 10.1007/s10700-009-9056-3.10.1007/s10700-009-9056-3
  36. Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8: 338–353.10.1016/S0019-9958(65)90241-X
  37. Zapata, H., Bustince, H., Montes, S., Bedregal, B., Dimuro, G., Takac, Z. and Baczyński, M. (2017). Interval-valued implications and interval-valued strong equality index with admissible orders, International Journal of Approximate Reasoning 88: 91–109.10.1016/j.ijar.2017.05.009
DOI: https://doi.org/10.34768/amcs-2021-0038 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 563 - 576
Submitted on: Mar 31, 2021
Accepted on: Oct 19, 2021
Published on: Dec 30, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Barbara Pękala, Piotr Grochowalski, Eulalia Szmidt, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.