Asiain, M.J., Bustince, H., Mesiar, R., Kolesarova, A. and Takac, Z. (2018). Negations with respect to admissible orders in the interval-valued fuzzy set theory, IEEE Transactions on Fuzzy Systems 26(2): 556–568.10.1109/TFUZZ.2017.2686372
Atanassov, K.T. (2008). On the intuitionistic fuzzy implications and negations, in P. Chountas et al. (Eds), Intelligent Techniques and Tools for Novel System Architectures, Springer, Berlin, pp. 381–394.10.1007/978-3-540-77623-9_22
Atanassov, K.T. (2016). Mathematics of intuitionistic fuzzy sets, in C. Kahraman et al. (Eds), Fuzzy Logic in Its 50th Year: New Developments, Directions and Challenges, Springer, Berlin, pp. 61–86.10.1007/978-3-319-31093-0_3
Beliakov, G., Bustince Sola, H., James, S., Calvo, T. and Fernandez, J. (2012). Aggregation for Atanassov’s intuitionistic and interval valued fuzzy sets: The median operator, IEEE Transactions on Fuzzy Systems 20(3): 487–498.10.1109/TFUZZ.2011.2177271
Bentkowska, U. (2018). New types of aggregation functions for interval-valued fuzzy setting and preservation of pos-B and nec-B-transitivity in decision making problems, Information Sciences 424: 385–399.10.1016/j.ins.2017.10.025
Bentkowska, U., Bustince, H., Jurio, A., Pagola, M. and Pekala, B. (2015). Decision making with an interval-valued fuzzy preference relation and admissible orders, Applied Soft Computing 35: 792–801.10.1016/j.asoc.2015.03.012
Burillo, P. and Bustince, H. (1995). Intuitionistic fuzzy relations: Effect of Atanassov’s operators on the properties of the intuitionistic fuzzy relation, Mathware and Soft Computing 2(2): 117–148.
Burillo, P. and Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Systems 78(3): 305–316.10.1016/0165-0114(96)84611-2
Deschrijiver, G., Cornelis, C. and Kerre, E.E. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12(1): 45–61.10.1109/TFUZZ.2003.822678
Deschrijver, G. and Kerre, E. (2003). On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133(2): 227–235.10.1016/S0165-0114(02)00127-6
Drygaś, P. (2011). Preservation of intuitionistic fuzzy preference relations, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Aix-les-Bains, France, pp. 554–558.
Dubois, D., Godo, L. and Prade, H. (2014). Weighted logics for artificial intelligence an introductory discussion, International Journal of Approximate Reasoning 55(9): 1819–1829.10.1016/j.ijar.2014.08.002
Dubois, D. and Prade, H. (2012). Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets and Systems 192: 3–24.10.1016/j.fss.2010.11.007
Dudziak, U. and Pękala, B. (2011). Intuitionistic fuzzy preference relations, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Aix-les-Bains, France, pp. 529–536.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
Pękala, B. (2009). Preservation of properties of interval-valued fuzzy relations, Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and the 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, pp. 1206–1210.
Pękala, B. (2019). Uncertainty Data in Interval-Valued Fuzzy Set Theory: Properties, Algorithms and Applications, Springer, Cham.10.1007/978-3-319-93910-0
Pękala, B., Bentkowska, U., Bustince, H., Fernandez, J. and Galar, M. (2015). Operators on intuitionistic fuzzy relations, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, pp. 1–8.
Pękala, B., Bentkowska, U. and De Baets, B. (2016). On comparability relations in the class of interval-valued fuzzy relations, Tatra Mountains Mathematical Publications 66(1): 91–101.10.1515/tmmp-2016-0023
Pękala, B., Szmidt, E. and Kacprzyk, J. (2018). Group decision support under intuitionistic fuzzy relations: The role of weak transitivity and consistency, International Journal of Intelligent Systems 33(10): 2078–2095.10.1002/int.21923
Pradhan, R. and Pal, M. (2017). Transitive and strongly transitive intuitionistic fuzzy matrices, Annals of Fuzzy Mathematics and Informatics 13(4): 485–498.10.30948/afmi.2017.13.4.485
Rutkowski, T., Łapa, K. and Nielek, R. (2019). On explainable fuzzy recommenders and their performance evaluation, International Journal of Applied Mathematics and Computer Science 29(3): 595–610, DOI: 10.2478/amcs-2019-0044.10.2478/amcs-2019-0044
Saminger, S., Mesiar, R. and Bodenhoffer, U. (2002). Domination of aggregation operators and preservation of transitivity, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(1): 11–35.10.1142/S0218488502001806
Szmidt, E. and Kacprzyk, J. (2006). Distances between intuitionistic fuzzy sets: Straightforward approaches may not work, 3rd International IEEE Conference on Intelligent Systems, IS06, London, UK, pp. 716–721.
Szmidt, E. and Kacprzyk, J. (2009). Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives, in E. Rakus-Andersson et al. (Eds), Recent Advances in Decision Making, Springer, Berlin, pp. 7–19.10.1007/978-3-642-02187-9_2
Szmidt, E. and Kacprzyk, J. (2017). A perspective on differences between Atanassov’s intuitionistic fuzzy sets and interval-valued fuzzy sets, Studies in Computational Intelligence 671: 221–237, DOI: 10.1007/978-3-319-47557-8_13.10.1007/978-3-319-47557-8_13
Xu, Y., Wanga, H. and Yu, D. (2014). Cover image weak transitivity of interval-valued fuzzy relations, Knowledge-Based Systems 63: 24–32.10.1016/j.knosys.2014.03.003
Xu, Z. (2007). Approaches to multiple attribute decision making with intuitionistic fuzzy preference information, Systems Engineering—Theory and Practice 27(11): 62–71.10.1016/S1874-8651(08)60069-1
Xu, Z. and Yager, R.R. (2009). Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group, Fuzzy Optimization and Decision Making 8(2): 123–139, DOI: 10.1007/s10700-009-9056-3.10.1007/s10700-009-9056-3
Zapata, H., Bustince, H., Montes, S., Bedregal, B., Dimuro, G., Takac, Z. and Baczyński, M. (2017). Interval-valued implications and interval-valued strong equality index with admissible orders, International Journal of Approximate Reasoning 88: 91–109.10.1016/j.ijar.2017.05.009