Have a personal or library account? Click to login

A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns

Open Access
|Dec 2021

References

  1. Al-Yousef, N., Al, R., Al, R., Al-Abdullatif, R., Al-Mutairi, F. and Bchir, O. (2020). Parkinson’s disease diagnosis using spiral test on digital tablets, International Journal of Advanced Computer Science and Applications 11(5): 461–470.10.14569/IJACSA.2020.0110560
  2. Ali, L., Zhu, C., Golilarz, N.A., Javeed, A., Zhou, M. and Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: Construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model, IEEE Access 7: 116480–116489.10.1109/ACCESS.2019.2932037
  3. Almeida, J.S., Filho, P.P.R., Carneiro, T., Wei, W., Damaševičius, R., Maskeliūnas, R. and de Albuquerque, V.H.C. (2019). Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques, Pattern Recognition Letters 125: 55–62.10.1016/j.patrec.2019.04.005
  4. Awatramani, V. and Gupta, D. (2020). Parkinson’s disease detection through visual deep learning, in D. Gupta et al. (Eds), Advances in Intelligent Systems and Computing, Springer, Singapore, pp. 963–972.
  5. Bernardo, L.S., Quezada, A., Munoz, R., Maia, F.M., Pereira, C.R., Wu, W. and de Albuquerque, V.H.C. (2019). Handwritten pattern recognition for early Parkinson’s disease diagnosis, Pattern Recognition Letters 125: 78–84.10.1016/j.patrec.2019.04.003
  6. Chakraborty, S., Aich, S., Jong-Seong-Sim, Han, E., Park, J. and Kim, H.-C. (2020). Parkinson’s disease detection from spiral and wave drawings using convolutional neural networks: A multistage classifier approach, IEEE 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, South Korea, pp. 298–303.
  7. Chen, J.H. and Asch, S.M. (2017). Machine learning and prediction in medicine—Beyond the peak of inflated expectations, New England Journal of Medicine 376(26): 2507–2509.10.1056/NEJMp1702071595382528657867
  8. Chen, J., Liao, M., Wang, G. and Chen, C. (2020). An intelligent multimodal framework for identifying children with autism spectrum disorder, International Journal of Applied Mathematics and Computer Science 30(3): 435–448, DOI: 10.34768/amcs-2020-0032.
  9. Chen-Plotkin, A.S. (2017). Blood transcriptomics for Parkinson disease?, Nature Reviews Neurology 14(1): 5–6.10.1038/nrneurol.2017.166583112329192261
  10. Cristianini, N. and Ricci, E. (2008). Support vector machines, in M.Y. Kao et al. (Ed.), Encyclopedia of Algorithms, Springer, Boston, pp. 928–932.10.1007/978-0-387-30162-4_415
  11. Crowley, E., Nolan, Y. and Sullivan, A. (2019). Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson’s disease: Evidence from rodent models, Progress in Neurobiology 172: 2–22.10.1016/j.pneurobio.2018.11.00330481560
  12. Damaševičius, R. (2010). Optimization of SVM parameters for recognition of regulatory DNA sequences, TOP 18(2): 339–353.10.1007/s11750-010-0152-x
  13. de Ipina, K.L., Solé-Casals, J., Faúndez-Zanuy, M., Calvo, P., Sesa, E., Roure, J., de Lizarduy, U.M., Beitia, B., Fernández, E., Iradi, J., Garcia-Melero, J. and Bergareche, A. (2018). Automatic analysis of Archimedes’ spiral for characterization of genetic essential tremor based on Shannon’s entropy and fractal dimension, Entropy 20(7): 531.10.3390/e20070531751305533265620
  14. Espay, A.J., Bonato, P., Nahab, F.B., Maetzler, W., Dean, J.M., Klucken, J., Eskofier, B.M., Merola, A., Horak, F., Lang, A.E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne, M., Little, M.A., Litvan, I., Simuni, T., Dorsey, E.R., Burack, M.A., Kubota, K., Kamondi, A., Godinho, C., Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J.M., Bloem, B.R. and Papapetropoulos, S. (2016). Technology in Parkinson’s disease: Challenges and opportunities, Movement Disorders 31(9): 1272–1282.10.1002/mds.26642501459427125836
  15. Gallicchio, C., Micheli, A. and Pedrelli, L. (2018). Deep echo state networks for diagnosis of Parkinson’s disease, 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, pp. 397–402.
  16. Garre-Olmo, J., Faúndez-Zanuy, M., de Ipiña, K.L., Calvó-Perxas, L. and Turró-Garriga, O. (2017). Kinematic and pressure features of handwriting and drawing: Preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls, Current Alzheimer Research 14(9): 960–968.10.2174/1567205014666170309120708573551828290244
  17. Gelb, D.J., Oliver, E. and Gilman, S. (1999). Diagnostic criteria for Parkinson disease, Archives of Neurology 56(1): 33–39.10.1001/archneur.56.1.339923759
  18. Gil-Martín, M., Montero, J.M. and San-Segundo, R. (2019). Parkinson’s disease detection from drawing movements using convolutional neural networks, Electronics 8(8): 1–10, Article 907.10.3390/electronics8080907
  19. Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science 30(2): 325–336, DOI: 10.34768/amcs-2020-0025.
  20. Gupta, D., Julka, A., Jain, S., Aggarwal, T., Khanna, A., Arunkumar, N. and de Albuquerque, V.H.C. (2019). Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease, Cognitive Systems Research 52: 36–48.10.1016/j.cogsys.2018.06.006
  21. Gupta, D., Sundaram, S., Khanna, A., Hassanien, A.E. and de Albuquerque, V. H.C. (2018). Improved diagnosis of Parkinson’s disease using optimized crow search algorithm, Computers & Electrical Engineering 68: 412–424.10.1016/j.compeleceng.2018.04.014
  22. Haubenberger, D., Kalowitz, D., Nahab, F.B., Toro, C., Ippolito, D., Luckenbaugh, D.A., Wittevrongel, L. and Hallett, M. (2011). Validation of digital spiral analysis as outcome parameter for clinical trials in essential tremor, Movement Disorders 26(11): 2073–2080.10.1002/mds.23808411768121714004
  23. Hess, C.W., Hsu, A.W., Yu, Q., Ortega, R. and Pullman, S.L. (2014). Increased variability in spiral drawing in patients with functional (psychogenic) tremor, Human Movement Science 38: 15–22.10.1016/j.humov.2014.08.00725240176
  24. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <0.5 mb model size, arXiv 1602.07360.
  25. Impedovo, D. and Pirlo, G. (2019). Dynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspective, IEEE Reviews in Biomedical Engineering 12: 209–220.10.1109/RBME.2018.284067929993722
  26. Impedovo, D., Pirlo, G. and Vessio, G. (2018). Dynamic handwriting analysis for supporting earlier Parkinson’s disease diagnosis, Information 9(10): 1–11, Article: 247.10.3390/info9100247
  27. Isenkul, M., Sakar, B. and O. Kursun, O. (2014). Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease, 2nd International Conference on e-Health and Telemedicine (ICEHTM-2014), Istanbul, Turkey, pp. 171–175.
  28. Islam, M.M., Tasnim, N. and Baek, J.-H. (2020). Human gender classification using transfer learning via Pareto frontier CNN networks, Inventions 5(2): 16.10.3390/inventions5020016
  29. Jin, W., Dong, S., Dong, C. and Ye, X. (2021). Hybrid ensemble model for differential diagnosis between Covid-19 and common viral pneumonia by chest x-ray radiograph, Computers in Biology and Medicine 131, Article 104252.10.1016/j.compbiomed.2021.104252796681933610001
  30. Kalliola, J., Kapočiūtė-Dzikienė, J. and Damaševičius, R. (2021). Neural network hyperparameter optimization for prediction of real estate prices in Helsinki, PeerJ Computer Science 7: e444.10.7717/peerj-cs.444806423433977129
  31. Khatamino, P., Canturk, I. and Ozyilmaz, L. (2018). A deep learning-CNN based system for medical diagnosis: An application on Parkinson’s disease handwriting drawings, 6th International IEEE Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, pp. 1–6.
  32. Khoshdeli, M., Cong, R. and Parvin, B. (2017). Detection of nuclei in H&E stained sections using convolutional neural networks, IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, USA, pp. 105–108.
  33. Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85–106, DOI: 10.34768/amcs-2021-0007.
  34. Kriti, Virmani, J. and Agarwal, R. (2020). Deep feature extraction and classification of breast ultrasound images, Multimedia Tools and Applications 79(37–38): 27257–27292.10.1007/s11042-020-09337-z
  35. Lauraitis, A., Maskeliunas, R., Damasevicius, R., Polap, D. and Wozniak, M. (2019). A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders, IEEE Journal of Biomedical and Health Informatics 23(5): 1865–1876.10.1109/JBHI.2019.289172930629520
  36. Lauraitis, A., Maskeliūnas, R., Damaševičius, R. and Krilavičius, T. (2020). A mobile application for smart computer-aided self-administered testing of cognition, speech, and motor impairment, Sensors 20(11), Article 3236.10.3390/s20113236730906132517223
  37. Lin, P.-C., Chen, K.-H., Yang, B.-S. and Chen, Y.-J. (2018). A digital assessment system for evaluating kinetic tremor in essential tremor and Parkinson’s disease, BMC Neurology 18(1): 25.10.1186/s12883-018-1027-2584529629523097
  38. Luciano, M.S., Wang, C., Ortega, R.A., Yu, Q., Boschung, S., Soto-Valencia, J., Bressman, S.B., Lipton, R.B., Pullman, S. and Saunders-Pullman, R. (2016). Digitized spiral drawing: A possible biomarker for early Parkinson’s disease, PLOS ONE 11(10): e0162799.10.1371/journal.pone.0162799506137227732597
  39. Moetesum, M., Siddiqi, I., Vincent, N. and Cloppet, F. (2019). Assessing visual attributes of handwriting for prediction of neurological disorders—A case study on Parkinson’s disease, Pattern Recognition Letters 121: 19–27.10.1016/j.patrec.2018.04.008
  40. Moshkova, A., Samorodov, A., Ivanova, E. and Fedotova, E. (2020). High accuracy discrimination of Parkinson’s disease from healthy controls by hand movements analysis using LeapMotion sensor and 1D convolutional neural network, Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, Yekaterinburg, Russia, pp. 0062–0065.
  41. Mucha, J., Mekyska, J., Galaz, Z., Faundez-Zanuy, M., de Ipina, K.L., Zvoncak, V., Kiska, T., Smekal, Z., Brabenec, L. and Rektorova, I. (2018). Identification and monitoring of Parkinson’s disease dysgraphia based on fractional-order derivatives of online handwriting, Applied Sciences 8(12): 2566.10.3390/app8122566
  42. Nguyen, T., Park, E., Cui, X., Nguyen, V. and Kim, H. (2018). fPADnet: Small and efficient convolutional neural network for presentation attack detection, Sensors 18(8): 2532.10.3390/s18082532611173030072662
  43. Oertel, W.H. (2017). Recent advances in treating Parkinson’s disease, F1000Research 6: 260.10.12688/f1000research.10100.1535703428357055
  44. Oh, S.L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M. and Acharya, U.R. (2018). A deep learning approach for Parkinson’s disease diagnosis from EEG signals, Neural Computing and Applications 32(15): 10927–10933.10.1007/s00521-018-3689-5
  45. Pereira, C.R., Pereira, D.R., da Silva, F.A., Hook, C., Weber, S.A., Pereira, L.A. and Papa, J.P. (2015). A step towards the automated diagnosis of Parkinson’s disease: Analyzing handwriting movements, IEEE 28th International Symposium on Computer-Based Medical Systems, Sao Carlos, Brazil, pp. 171–176.
  46. Pereira, C.R., Pereira, D.R., Rosa, G.H., Albuquerque, V.H., Weber, S.A., Hook, C. and Papa, J.P. (2018). Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson’s disease identification, Artificial Intelligence in Medicine 87: 67–77.10.1016/j.artmed.2018.04.00129673947
  47. Pereira, C.R., Pereira, D.R., Silva, F.A., Masieiro, J.P., Weber, S.A.T., Hook, C. and Papa, J.P. (2016). A new computer vision-based approach to aid the diagnosis of Parkinson’s disease, Computer Methods and Programs in Biomedicine 136: 79–88.10.1016/j.cmpb.2016.08.00527686705
  48. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E. and Lang, A.E. (2017). Parkinson disease, Nature Reviews Disease Primers 3(1), Article 17013.10.1038/nrdp.2017.1328332488
  49. Priya, S.J., Rani, A.J., Subathra, M.S.P., Mohammed, M.A., Damaševičius, R. and Ubendran, N. (2021). Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals, Diagnostics 11(8), Article 1395.10.3390/diagnostics11081395839151334441329
  50. Raghavendra, U., Bhat, N.S., Gudigar, A. and Acharya, U.R. (2018). Automated system for the detection of thoracolumbar fractures using a CNN architecture, Future Generation Computer Systems 85: 184–189.10.1016/j.future.2018.03.023
  51. Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I. and Schlesinger, I. (2013). Handwriting as an objective tool for Parkinson’s disease diagnosis, Journal of Neurology 260(9): 2357–2361.10.1007/s00415-013-6996-x23771509
  52. Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M. and Pullman, S.L. (2008). Validity of spiral analysis in early Parkinson’s disease, Movement Disorders 23(4): 531–537.10.1002/mds.2187418074362
  53. Savitt, J.M. (2006). Diagnosis and treatment of Parkinson disease: Molecules to medicine, Journal of Clinical Investigation 116(7): 1744–1754.10.1172/JCI29178148317816823471
  54. Shaban, M. (2020). Deep convolutional neural network for Parkinson’s disease based handwriting screening, IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, USA, pp. 1–4.
  55. Sivaranjini, S. and Sujatha, C.M. (2019). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network, Multimedia Tools and Applications 79(21–22): 15467–15479.10.1007/s11042-019-7469-8
  56. Stefano, C.D., Fontanella, F., Impedovo, D., Pirlo, G. and di Freca, A.S. (2019). Handwriting analysis to support neurodegenerative diseases diagnosis: A review, Pattern Recognition Letters 121: 37–45.10.1016/j.patrec.2018.05.013
  57. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B. and Liang, J. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Transactions on Medical Imaging 35(5): 1299–1312.10.1109/TMI.2016.253530226978662
  58. Trist, B.G., Hare, D.J. and Double, K.L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease, Aging Cell 18(6), Article e13031.10.1111/acel.13031682616031432604
  59. Tseng, M.H. and Cermak, S.A. (1993). The influence of ergonomic factors and perceptual-motor abilities on handwriting performance, American Journal of Occupational Therapy 47(10): 919–926.10.5014/ajot.47.10.9198109612
  60. Tysnes, O.-B. and Storstein, A. (2017). Epidemiology of Parkinson’s disease, Journal of Neural Transmission 124(8): 901–905.10.1007/s00702-017-1686-y28150045
  61. van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE, Journal of Machine Learning Research 9(86): 2579–2605.
  62. Wang, H., Zheng, B., Yoon, S.W. and Ko, H.S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis, European Journal of Operational Research 267(2): 687–699.10.1016/j.ejor.2017.12.001
  63. Wang, M. and Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis, Applied Soft Computing 88: 105946.10.1016/j.asoc.2019.105946
  64. Zham, P., Arjunan, S.P., Raghav, S. and Kumar, D.K. (2018). Efficacy of guided spiral drawing in the classification of Parkinson’s disease, IEEE Journal of Biomedical and Health Informatics 22(5): 1648–1652.10.1109/JBHI.2017.276200829028217
  65. Zham, P., Kumar, D., Dabnichki, P., Arjunan, S.P. and Raghav, S. (2017). Distinguishing different stages of Parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral, Frontiers in Neurology 8, Article 435.10.3389/fneur.2017.00435559274128932206
  66. Zhang, T., Zhang, Y., Cao, Y., n Li and Hao, L. (2020). Diagnosing Parkinson’s disease with speech signal based on convolutional neural network, International Journal of Computer Applications in Technology 63(4): 348.10.1504/IJCAT.2020.10032598
DOI: https://doi.org/10.34768/amcs-2021-0037 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 549 - 561
Submitted on: Jan 1, 2021
Accepted on: Sep 5, 2021
Published on: Dec 30, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Lucas Salvador Bernardo, Robertas Damaševičius, Victor Hugo C. De Albuquerque, Rytis Maskeliūnas, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.