Al-Yousef, N., Al, R., Al, R., Al-Abdullatif, R., Al-Mutairi, F. and Bchir, O. (2020). Parkinson’s disease diagnosis using spiral test on digital tablets, International Journal of Advanced Computer Science and Applications11(5): 461–470.10.14569/IJACSA.2020.0110560
Ali, L., Zhu, C., Golilarz, N.A., Javeed, A., Zhou, M. and Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: Construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model, IEEE Access7: 116480–116489.10.1109/ACCESS.2019.2932037
Almeida, J.S., Filho, P.P.R., Carneiro, T., Wei, W., Damaševičius, R., Maskeliūnas, R. and de Albuquerque, V.H.C. (2019). Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques, Pattern Recognition Letters125: 55–62.10.1016/j.patrec.2019.04.005
Awatramani, V. and Gupta, D. (2020). Parkinson’s disease detection through visual deep learning, in D. Gupta et al. (Eds), Advances in Intelligent Systems and Computing, Springer, Singapore, pp. 963–972.
Bernardo, L.S., Quezada, A., Munoz, R., Maia, F.M., Pereira, C.R., Wu, W. and de Albuquerque, V.H.C. (2019). Handwritten pattern recognition for early Parkinson’s disease diagnosis, Pattern Recognition Letters125: 78–84.10.1016/j.patrec.2019.04.003
Chakraborty, S., Aich, S., Jong-Seong-Sim, Han, E., Park, J. and Kim, H.-C. (2020). Parkinson’s disease detection from spiral and wave drawings using convolutional neural networks: A multistage classifier approach, IEEE 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, South Korea, pp. 298–303.
Chen, J.H. and Asch, S.M. (2017). Machine learning and prediction in medicine—Beyond the peak of inflated expectations, New England Journal of Medicine376(26): 2507–2509.10.1056/NEJMp1702071595382528657867
Chen, J., Liao, M., Wang, G. and Chen, C. (2020). An intelligent multimodal framework for identifying children with autism spectrum disorder, International Journal of Applied Mathematics and Computer Science30(3): 435–448, DOI: 10.34768/amcs-2020-0032.
Cristianini, N. and Ricci, E. (2008). Support vector machines, in M.Y. Kao et al. (Ed.), Encyclopedia of Algorithms, Springer, Boston, pp. 928–932.10.1007/978-0-387-30162-4_415
Crowley, E., Nolan, Y. and Sullivan, A. (2019). Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson’s disease: Evidence from rodent models, Progress in Neurobiology172: 2–22.10.1016/j.pneurobio.2018.11.00330481560
de Ipina, K.L., Solé-Casals, J., Faúndez-Zanuy, M., Calvo, P., Sesa, E., Roure, J., de Lizarduy, U.M., Beitia, B., Fernández, E., Iradi, J., Garcia-Melero, J. and Bergareche, A. (2018). Automatic analysis of Archimedes’ spiral for characterization of genetic essential tremor based on Shannon’s entropy and fractal dimension, Entropy20(7): 531.10.3390/e20070531751305533265620
Gallicchio, C., Micheli, A. and Pedrelli, L. (2018). Deep echo state networks for diagnosis of Parkinson’s disease, 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, pp. 397–402.
Garre-Olmo, J., Faúndez-Zanuy, M., de Ipiña, K.L., Calvó-Perxas, L. and Turró-Garriga, O. (2017). Kinematic and pressure features of handwriting and drawing: Preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls, Current Alzheimer Research14(9): 960–968.10.2174/1567205014666170309120708573551828290244
Gelb, D.J., Oliver, E. and Gilman, S. (1999). Diagnostic criteria for Parkinson disease, Archives of Neurology56(1): 33–39.10.1001/archneur.56.1.339923759
Gil-Martín, M., Montero, J.M. and San-Segundo, R. (2019). Parkinson’s disease detection from drawing movements using convolutional neural networks, Electronics8(8): 1–10, Article 907.10.3390/electronics8080907
Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science30(2): 325–336, DOI: 10.34768/amcs-2020-0025.
Gupta, D., Julka, A., Jain, S., Aggarwal, T., Khanna, A., Arunkumar, N. and de Albuquerque, V.H.C. (2019). Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease, Cognitive Systems Research52: 36–48.10.1016/j.cogsys.2018.06.006
Gupta, D., Sundaram, S., Khanna, A., Hassanien, A.E. and de Albuquerque, V. H.C. (2018). Improved diagnosis of Parkinson’s disease using optimized crow search algorithm, Computers & Electrical Engineering68: 412–424.10.1016/j.compeleceng.2018.04.014
Haubenberger, D., Kalowitz, D., Nahab, F.B., Toro, C., Ippolito, D., Luckenbaugh, D.A., Wittevrongel, L. and Hallett, M. (2011). Validation of digital spiral analysis as outcome parameter for clinical trials in essential tremor, Movement Disorders26(11): 2073–2080.10.1002/mds.23808411768121714004
Hess, C.W., Hsu, A.W., Yu, Q., Ortega, R. and Pullman, S.L. (2014). Increased variability in spiral drawing in patients with functional (psychogenic) tremor, Human Movement Science38: 15–22.10.1016/j.humov.2014.08.00725240176
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <0.5 mb model size, arXiv 1602.07360.
Impedovo, D. and Pirlo, G. (2019). Dynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspective, IEEE Reviews in Biomedical Engineering12: 209–220.10.1109/RBME.2018.284067929993722
Impedovo, D., Pirlo, G. and Vessio, G. (2018). Dynamic handwriting analysis for supporting earlier Parkinson’s disease diagnosis, Information9(10): 1–11, Article: 247.10.3390/info9100247
Isenkul, M., Sakar, B. and O. Kursun, O. (2014). Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease, 2nd International Conference on e-Health and Telemedicine (ICEHTM-2014), Istanbul, Turkey, pp. 171–175.
Islam, M.M., Tasnim, N. and Baek, J.-H. (2020). Human gender classification using transfer learning via Pareto frontier CNN networks, Inventions5(2): 16.10.3390/inventions5020016
Jin, W., Dong, S., Dong, C. and Ye, X. (2021). Hybrid ensemble model for differential diagnosis between Covid-19 and common viral pneumonia by chest x-ray radiograph, Computers in Biology and Medicine131, Article 104252.10.1016/j.compbiomed.2021.104252796681933610001
Kalliola, J., Kapočiūtė-Dzikienė, J. and Damaševičius, R. (2021). Neural network hyperparameter optimization for prediction of real estate prices in Helsinki, PeerJ Computer Science7: e444.10.7717/peerj-cs.444806423433977129
Khatamino, P., Canturk, I. and Ozyilmaz, L. (2018). A deep learning-CNN based system for medical diagnosis: An application on Parkinson’s disease handwriting drawings, 6th International IEEE Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, pp. 1–6.
Khoshdeli, M., Cong, R. and Parvin, B. (2017). Detection of nuclei in H&E stained sections using convolutional neural networks, IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, USA, pp. 105–108.
Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science31(1): 85–106, DOI: 10.34768/amcs-2021-0007.
Kriti, Virmani, J. and Agarwal, R. (2020). Deep feature extraction and classification of breast ultrasound images, Multimedia Tools and Applications79(37–38): 27257–27292.10.1007/s11042-020-09337-z
Lauraitis, A., Maskeliunas, R., Damasevicius, R., Polap, D. and Wozniak, M. (2019). A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders, IEEE Journal of Biomedical and Health Informatics23(5): 1865–1876.10.1109/JBHI.2019.289172930629520
Lauraitis, A., Maskeliūnas, R., Damaševičius, R. and Krilavičius, T. (2020). A mobile application for smart computer-aided self-administered testing of cognition, speech, and motor impairment, Sensors20(11), Article 3236.10.3390/s20113236730906132517223
Lin, P.-C., Chen, K.-H., Yang, B.-S. and Chen, Y.-J. (2018). A digital assessment system for evaluating kinetic tremor in essential tremor and Parkinson’s disease, BMC Neurology18(1): 25.10.1186/s12883-018-1027-2584529629523097
Luciano, M.S., Wang, C., Ortega, R.A., Yu, Q., Boschung, S., Soto-Valencia, J., Bressman, S.B., Lipton, R.B., Pullman, S. and Saunders-Pullman, R. (2016). Digitized spiral drawing: A possible biomarker for early Parkinson’s disease, PLOS ONE11(10): e0162799.10.1371/journal.pone.0162799506137227732597
Moetesum, M., Siddiqi, I., Vincent, N. and Cloppet, F. (2019). Assessing visual attributes of handwriting for prediction of neurological disorders—A case study on Parkinson’s disease, Pattern Recognition Letters121: 19–27.10.1016/j.patrec.2018.04.008
Moshkova, A., Samorodov, A., Ivanova, E. and Fedotova, E. (2020). High accuracy discrimination of Parkinson’s disease from healthy controls by hand movements analysis using LeapMotion sensor and 1D convolutional neural network, Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, Yekaterinburg, Russia, pp. 0062–0065.
Mucha, J., Mekyska, J., Galaz, Z., Faundez-Zanuy, M., de Ipina, K.L., Zvoncak, V., Kiska, T., Smekal, Z., Brabenec, L. and Rektorova, I. (2018). Identification and monitoring of Parkinson’s disease dysgraphia based on fractional-order derivatives of online handwriting, Applied Sciences8(12): 2566.10.3390/app8122566
Nguyen, T., Park, E., Cui, X., Nguyen, V. and Kim, H. (2018). fPADnet: Small and efficient convolutional neural network for presentation attack detection, Sensors18(8): 2532.10.3390/s18082532611173030072662
Oh, S.L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M. and Acharya, U.R. (2018). A deep learning approach for Parkinson’s disease diagnosis from EEG signals, Neural Computing and Applications32(15): 10927–10933.10.1007/s00521-018-3689-5
Pereira, C.R., Pereira, D.R., da Silva, F.A., Hook, C., Weber, S.A., Pereira, L.A. and Papa, J.P. (2015). A step towards the automated diagnosis of Parkinson’s disease: Analyzing handwriting movements, IEEE 28th International Symposium on Computer-Based Medical Systems, Sao Carlos, Brazil, pp. 171–176.
Pereira, C.R., Pereira, D.R., Silva, F.A., Masieiro, J.P., Weber, S.A.T., Hook, C. and Papa, J.P. (2016). A new computer vision-based approach to aid the diagnosis of Parkinson’s disease, Computer Methods and Programs in Biomedicine136: 79–88.10.1016/j.cmpb.2016.08.00527686705
Priya, S.J., Rani, A.J., Subathra, M.S.P., Mohammed, M.A., Damaševičius, R. and Ubendran, N. (2021). Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals, Diagnostics11(8), Article 1395.10.3390/diagnostics11081395839151334441329
Raghavendra, U., Bhat, N.S., Gudigar, A. and Acharya, U.R. (2018). Automated system for the detection of thoracolumbar fractures using a CNN architecture, Future Generation Computer Systems85: 184–189.10.1016/j.future.2018.03.023
Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I. and Schlesinger, I. (2013). Handwriting as an objective tool for Parkinson’s disease diagnosis, Journal of Neurology260(9): 2357–2361.10.1007/s00415-013-6996-x23771509
Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M. and Pullman, S.L. (2008). Validity of spiral analysis in early Parkinson’s disease, Movement Disorders23(4): 531–537.10.1002/mds.2187418074362
Savitt, J.M. (2006). Diagnosis and treatment of Parkinson disease: Molecules to medicine, Journal of Clinical Investigation116(7): 1744–1754.10.1172/JCI29178148317816823471
Shaban, M. (2020). Deep convolutional neural network for Parkinson’s disease based handwriting screening, IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, USA, pp. 1–4.
Sivaranjini, S. and Sujatha, C.M. (2019). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network, Multimedia Tools and Applications79(21–22): 15467–15479.10.1007/s11042-019-7469-8
Stefano, C.D., Fontanella, F., Impedovo, D., Pirlo, G. and di Freca, A.S. (2019). Handwriting analysis to support neurodegenerative diseases diagnosis: A review, Pattern Recognition Letters121: 37–45.10.1016/j.patrec.2018.05.013
Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B. and Liang, J. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Transactions on Medical Imaging35(5): 1299–1312.10.1109/TMI.2016.253530226978662
Trist, B.G., Hare, D.J. and Double, K.L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease, Aging Cell18(6), Article e13031.10.1111/acel.13031682616031432604
Tseng, M.H. and Cermak, S.A. (1993). The influence of ergonomic factors and perceptual-motor abilities on handwriting performance, American Journal of Occupational Therapy47(10): 919–926.10.5014/ajot.47.10.9198109612
Tysnes, O.-B. and Storstein, A. (2017). Epidemiology of Parkinson’s disease, Journal of Neural Transmission124(8): 901–905.10.1007/s00702-017-1686-y28150045
Wang, H., Zheng, B., Yoon, S.W. and Ko, H.S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis, European Journal of Operational Research267(2): 687–699.10.1016/j.ejor.2017.12.001
Wang, M. and Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis, Applied Soft Computing88: 105946.10.1016/j.asoc.2019.105946
Zham, P., Arjunan, S.P., Raghav, S. and Kumar, D.K. (2018). Efficacy of guided spiral drawing in the classification of Parkinson’s disease, IEEE Journal of Biomedical and Health Informatics22(5): 1648–1652.10.1109/JBHI.2017.276200829028217
Zham, P., Kumar, D., Dabnichki, P., Arjunan, S.P. and Raghav, S. (2017). Distinguishing different stages of Parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral, Frontiers in Neurology8, Article 435.10.3389/fneur.2017.00435559274128932206
Zhang, T., Zhang, Y., Cao, Y., n Li and Hao, L. (2020). Diagnosing Parkinson’s disease with speech signal based on convolutional neural network, International Journal of Computer Applications in Technology63(4): 348.10.1504/IJCAT.2020.10032598