Albright, S.C. (1993). A statistical analysis of hitting streaks in baseball, Journal of the American Statistical Association 88(424): 1175–1183.10.1080/01621459.1993.10476395
Baker, R.D. and McHale, I.G. (2014). A dynamic paired comparisons model: Who is the greatest tennis player?, European Journal of Operational Research 236(2): 677–684.10.1016/j.ejor.2013.12.028
Baker, R.D. and McHale, I.G. (2017). An empirical Bayes model for time-varying paired comparisons ratings: Who is the greatest women’s tennis player?, European Journal of Operational Research 258(1): 328–333.10.1016/j.ejor.2016.08.043
Ballı, S. and Korukoğlu, S. (2014). Development of a fuzzy decision support framework for complex multi-attribute decision problems: A case study for the selection of skilful basketball players, Expert Systems 31(1): 56–69.10.1111/exsy.12002
Barnett, T., Brown, A. and Clarke, S. (2006). Developing a model that reflects outcomes of tennis matches, Proceedings of the 8th Australasian Conference on Mathematics and Computers in Sport, Coolangatta, Australia, pp. 3–5.
Barnett, T. and Clarke, S.R. (2005). Combining player statistics to predict outcomes of tennis matches, IMA Journal of Management Mathematics 16(2): 113–120.10.1093/imaman/dpi001
Barnett, T.J. and Clarke, S.R. (2002). Using Microsoft Excel to model a tennis match, 6th Conference on Mathematics and Computers in Sport, Queensland, Australia, pp. 63–68.
Boulier, B.L. and Stekler, H.O. (1999). Are sports seedings good predictors? An evaluation, International Journal of Forecasting 15(1): 83–91.10.1016/S0169-2070(98)00067-3
Boulier, B.L. and Stekler, H.O. (2003). Predicting the outcomes of national football league games, International Journal of Forecasting 19(2): 257–270.10.1016/S0169-2070(01)00144-3
Carbone, J., Corke, T. and Moisiadis, F. (2016). The rugby league prediction model: Using an Elo-based approach to predict the outcome of National Rugby League (NRL) matches, International Educational Scientific Research Journal 2(5): 26–30.
Carrari, A., Ferrante, M. and Fonseca, G. (2017). A new Markovian model for tennis matches, Electronic Journal of Applied Statistical Analysis 10(3): 693–711.
Chang, J.C. (2019). Predictive Bayesian selection of multistep Markov chains, applied to the detection of the hot hand and other statistical dependencies in free throws, Royal Society Open Science 6(3): 182174.10.1098/rsos.182174645836731032054
Clarke, S.R. and Dyte, D. (2000). Using official ratings to simulate major tennis tournaments, International Transactions in Operational Research 7(6): 585–594.10.1111/j.1475-3995.2000.tb00218.x
Croucher, J.S. (1986). The conditional probability of winning games of tennis, Research Quarterly for Exercise and Sport 57(1): 23–26.10.1080/02701367.1986.10605384
Dadelo, S., Turskis, Z., Zavadskas, E.K. and Dadeliene, R. (2014). Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set, Expert Systems with Applications 41(14): 6106–6113.10.1016/j.eswa.2014.03.036
Dangauthier, P., Herbrich, R., Minka, T. and Graepel, T. (2007). Trueskill through time: Revisiting the history of chess, Advances in Neural Information Processing Systems 20: 337–344.
Gilovich, T., Vallone, R. and Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences, Cognitive Psychology 17(3): 295–314.10.1016/0010-0285(85)90010-6
Glickman, M.E. (1999). Parameter estimation in large dynamic paired comparison experiments, Journal of the Royal Statistical Society: Series C (Applied Statistics) 48(3): 377–394.10.1111/1467-9876.00159
Green, B. and Zwiebel, J. (2017). The hot-hand fallacy: Cognitive mistakes or equilibrium adjustments? Evidence from major league baseball, Management Science 64(11): 5315–5348.10.1287/mnsc.2017.2804
Hvattum, L.M. and Arntzen, H. (2010). Using Elo ratings for match result prediction in association football, International Journal of Forecasting 26(3): 460–470.10.1016/j.ijforecast.2009.10.002
Iso-Ahola, S.E. and Mobily, K. (1980). Psychological momentum: A phenomenon and an empirical (unobtrusive) validation of its influence in a competitive sport tournament, Psychological Reports 46(2): 391–401.10.2466/pr0.1980.46.2.391
Klaassen, F.J. and Magnus, J.R. (2001). Are points in tennis independent and identically distributed? Evidence from a dynamic binary panel data model, Journal of the American Statistical Association 96(454): 500–509.10.1198/016214501753168217
Klaassen, F.J. and Magnus, J.R. (2003). Forecasting the winner of a tennis match, European Journal of Operational Research 148(2): 257–267.10.1016/S0377-2217(02)00682-3
Knottenbelt, W.J., Spanias, D. and Madurska, A.M. (2012). A common-opponent stochastic model for predicting the outcome of professional tennis matches, Computers & Mathematics with Applications 64(12): 3820–3827.10.1016/j.camwa.2012.03.005
Kovalchik, S.A. (2016). Searching for the goat of tennis win prediction, Journal of Quantitative Analysis in Sports 12(3): 127–138.10.1515/jqas-2015-0059
Kovalchik, S. and Reid, M. (2019). A calibration method with dynamic updates for within-match forecasting of wins in tennis, International Journal of Forecasting 35(2): 756–766.10.1016/j.ijforecast.2017.11.008
Lebovic, J.H. and Sigelman, L. (2001). The forecasting accuracy and determinants of football rankings, International Journal of Forecasting 17(1): 105–120.10.1016/S0169-2070(00)00064-9
Leitner, C., Zeileis, A. and Hornik, K. (2010). Forecasting sports tournaments by ratings of (prob) abilities: A comparison for the Euro 2008, International Journal of Forecasting 26(3): 471–481.10.1016/j.ijforecast.2009.10.001
Martin, D.E. (2006). A recursive algorithm for computing the distribution of the number of successes in higher-order Markovian trials, Computational Statistics & Data Analysis 50(3): 604–610.10.1016/j.csda.2004.09.005
McHale, I. and Morton, A. (2011). A Bradley–Terry type model for forecasting tennis match results, International Journal of Forecasting 27(2): 619–630.10.1016/j.ijforecast.2010.04.004
Morris, B., Bialik, C. and Boice, J. (2016). How we’re forecasting the 2016 US Open, https://fivethirtyeight.com/features/how-were-forecasting-the-2016-us-open/.
Newton, P.K. and Aslam, K. (2009). Monte Carlo tennis: A stochastic Markov chain model, Journal of Quantitative Analysis in Sports 5(3): 1–44.10.2202/1559-0410.1169
O’Malley, A.J. (2008). Probability formulas and statistical analysis in tennis, Journal of Quantitative Analysis in Sports 4(2): 1–23.10.2202/1559-0410.1100
Percy, D.F. (2015). Strategy selection and outcome prediction in sport using dynamic learning for stochastic processes, Journal of the Operational Research Society 66(11): 1840–1849.10.1057/jors.2014.137
Pollard, G. (1983). An analysis of classical and tie-breaker tennis, Australian Journal of Statistics 25(3): 496–505.10.1111/j.1467-842X.1983.tb01222.x
Radicchi, F. (2011). Who is the best player ever? A complex network analysis of the history of professional tennis, PloS ONE 6(2): e17249.10.1371/journal.pone.0017249303727721339809
Renick, J. (1976). Optimal strategy at decision points in singles squash, Research Quarterly. American Alliance for Health, Physical Education and Recreation 47(3): 562–568.
Ryall, R. and Bedford, A. (2010). An optimized ratings-based model for forecasting Australian rules football, International Journal of Forecasting 26(3): 511–517.10.1016/j.ijforecast.2010.01.001
Šarčević, A., Pintar, D., Vranić, M. and Gojsalić, A. (2021). Modeling in-match sports dynamics using the evolving probability method, Applied Sciences 11(10): 4429.10.3390/app11104429
Schutz, R.W. (1970). A mathematical model for evaluating scoring systems with specific reference to tennis, Research Quarterly: American Association for Health, Physical Education and Recreation 41(4): 552–561.10.1080/10671188.1970.10615015
Spanias, D. and Knottenbelt, W. J. (2013). Predicting the outcomes of tennis matches using a low-level point model, IMA Journal of Management Mathematics 24(3): 311–320.10.1093/imaman/dps010
Wetzels, R., Tutschkow, D., Dolan, C., Van der Sluis, S., Dutilh, G. and Wagenmakers, E.-J. (2016). A Bayesian test for the hot hand phenomenon, Journal of Mathematical Psychology 72: 200–209.10.1016/j.jmp.2015.12.003