Have a personal or library account? Click to login

A Nested Autoencoder Approach to Automated Defect Inspection on Textured Surfaces

Open Access
|Sep 2021

References

  1. Alipour, M. and Harris, D.K. (2020). Increasing the robustness of material-specific deep learning models for crack detection across different materials, Engineering Structures 206: 110157.10.1016/j.engstruct.2019.110157
  2. Bergmann, P., Fauser, M., Sattlegger, D. and Steger, C. (2019). MVTec AD—A comprehensive real-world dataset for unsupervised anomaly detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 9592–9600.
  3. Bhattad, A., Rock, J. and Forsyth, D. (2018). Detecting anomalous faces with ‘no peeking’ autoencoders, arXiv 1802.05798.
  4. da Costa, A.Z., Figueroa, H.E. and Fracarolli, J.A. (2020). Computer vision based detection of external defects on tomatoes using deep learning, Biosystems Engineering 190: 131–144.10.1016/j.biosystemseng.2019.12.003
  5. He, T., Liu, Y., Xu, C., Zhou, X., Hu, Z. and Fan, J. (2019). A fully convolutional neural network for wood defect location and identification, IEEE Access 7: 123453–123462.10.1109/ACCESS.2019.2937461
  6. He, T., Liu, Y., Yu, Y., Zhao, Q. and Hu, Z. (2020). Application of deep convolutional neural network on feature extraction and detection of wood defects, Measurement 152: 107357.10.1016/j.measurement.2019.107357
  7. Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z. and Huang, X. (2019). Unsupervised fabric defect detection based on a deep convolutional generative adversarial network, Textile Research Journal 90(3–4): 247–270, DOI:10.1177/0040517519862880.10.1177/0040517519862880
  8. Jia, L., Chen, C., Xu, S. and Shen, J. (2020). Fabric defect inspection based on lattice segmentation and template statistics, Information Sciences 512: 964–984.10.1016/j.ins.2019.10.032
  9. Kang, X. and Zhang, E. (2019). A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image, Textile Research Journal 89(21–22): 4766–4793.10.1177/0040517519840636
  10. Li, C., Gao, G., Liu, Z., Huang, D. and Xi, J. (2019a). Defect detection for patterned fabric images based on GHOG and low-rank decomposition, IEEE Access 7: 83962–83973.10.1109/ACCESS.2019.2925196
  11. Li, F., Yuan, L., Zhang, K. and Li, W. (2019b). A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix, Textile Research Journal 90(7–8): 776–796, DOI: 10.1177/0040517519879904.10.1177/0040517519879904
  12. Li, Y., Zhao, W. and Pan, J. (2016). Deformable patterned fabric defect detection with fisher criterion-based deep learning, IEEE Transactions on Automation Science and Engineering 14(2): 1256–1264.10.1109/TASE.2016.2520955
  13. Lian, J., Jia, W., Zareapoor, M., Zheng, Y., Luo, R., Jain, D.K. and Kumar, N. (2019). Deep learning based small surface defect detection via exaggerated local variation-based generative adversarial network, IEEE Transactions on Industrial Informatics 16(2): 1343–1351.10.1109/TII.2019.2945403
  14. Lizarraga-Morales, R.A., Correa-Tome, F.E., Sanchez-Yanez, R.E. and Cepeda-Negrete, J. (2019). On the use of binary features in a rule-based approach for defect detection on patterned textiles, IEEE Access 7: 18042–18049.10.1109/ACCESS.2019.2896078
  15. Luo, Q., Fang, X., Sun, Y., Liu, L., Ai, J., Yang, C. and Simpson, O. (2019). Surface defect classification for hot-rolled steel strips by selectively dominant local binary patterns, IEEE Access 7: 23488–23499.10.1109/ACCESS.2019.2898215
  16. MVTEC AD (2019). MVTEC Anomaly Detection Dataset, MVTec Software GmbH, Munich, https://www.mvtec.com/company/research/datasets/mvtec-ad.
  17. Ouyang, W., Xu, B., Hou, J. and Yuan, X. (2019). Fabric defect detection using activation layer embedded convolutional neural network, IEEE Access 7: 70130–70140.10.1109/ACCESS.2019.2913620
  18. Sun, J., Wang, P., Luo, Y.-K. and Li, W. (2019). Surface defects detection based on adaptive multiscale image collection and convolutional neural networks, IEEE Transactions on Instrumentation and Measurement 68(12): 4787–4797.10.1109/TIM.2019.2899478
  19. Wang, H., Zhang, J., Tian, Y., Chen, H., Sun, H. and Liu, K. (2018). A simple guidance template-based defect detection method for strip steel surfaces, IEEE Transactions on Industrial Informatics 15(5): 2798–2809.10.1109/TII.2018.2887145
  20. Wang, J., Li, Q., Gan, J., Yu, H. and Yang, X. (2019a). Surface defect detection via entity sparsity pursuit with intrinsic priors, IEEE Transactions on Industrial Informatics 16(1): 141–150.10.1109/TII.2019.2917522
  21. Wang, R., Guo, Q., Lu, S. and Zhang, C. (2019b). Tire defect detection using fully convolutional network, IEEE Access 7: 43502–43510.10.1109/ACCESS.2019.2908483
  22. Wei, B., Hao, K., Tang, X.-s. and Ding, Y. (2019). A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes, Textile Research Journal 89(17): 3539–3555.10.1177/0040517518813656
  23. Xie, H., Zhang, Y. and Wu, Z. (2019). Fabric defect detection method combing image pyramid and direction template, IEEE Access 7: 182320–182334.10.1109/ACCESS.2019.2959880
  24. Yang, H., Chen, Y., Song, K. and Yin, Z. (2019). Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects, IEEE Transactions on Automation Science and Engineering 16(3): 1450–1467.10.1109/TASE.2018.2886031
  25. Yu, H., Li, Q., Tan, Y., Gan, J., Wang, J., Geng, Y.-a. and Jia, L. (2018). A coarse-to-fine model for rail surface defect detection, IEEE Transactions on Instrumentation and Measurement 68(3): 656–666.10.1109/TIM.2018.2853958
  26. Zhang, Z., Wen, G. and Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding, Journal of Manufacturing Processes 45: 208–216.10.1016/j.jmapro.2019.06.023
DOI: https://doi.org/10.34768/amcs-2021-0035 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 515 - 523
Submitted on: Mar 6, 2021
Accepted on: Jun 10, 2021
Published on: Sep 27, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Muhammed Ali Nur Oz, Ozgur Turay Kaymakci, Muharrem Mercimek, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.