Alipour, M. and Harris, D.K. (2020). Increasing the robustness of material-specific deep learning models for crack detection across different materials, Engineering Structures 206: 110157.10.1016/j.engstruct.2019.110157
Bergmann, P., Fauser, M., Sattlegger, D. and Steger, C. (2019). MVTec AD—A comprehensive real-world dataset for unsupervised anomaly detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 9592–9600.
da Costa, A.Z., Figueroa, H.E. and Fracarolli, J.A. (2020). Computer vision based detection of external defects on tomatoes using deep learning, Biosystems Engineering 190: 131–144.10.1016/j.biosystemseng.2019.12.003
He, T., Liu, Y., Xu, C., Zhou, X., Hu, Z. and Fan, J. (2019). A fully convolutional neural network for wood defect location and identification, IEEE Access 7: 123453–123462.10.1109/ACCESS.2019.2937461
He, T., Liu, Y., Yu, Y., Zhao, Q. and Hu, Z. (2020). Application of deep convolutional neural network on feature extraction and detection of wood defects, Measurement 152: 107357.10.1016/j.measurement.2019.107357
Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z. and Huang, X. (2019). Unsupervised fabric defect detection based on a deep convolutional generative adversarial network, Textile Research Journal 90(3–4): 247–270, DOI:10.1177/0040517519862880.10.1177/0040517519862880
Jia, L., Chen, C., Xu, S. and Shen, J. (2020). Fabric defect inspection based on lattice segmentation and template statistics, Information Sciences 512: 964–984.10.1016/j.ins.2019.10.032
Kang, X. and Zhang, E. (2019). A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image, Textile Research Journal 89(21–22): 4766–4793.10.1177/0040517519840636
Li, C., Gao, G., Liu, Z., Huang, D. and Xi, J. (2019a). Defect detection for patterned fabric images based on GHOG and low-rank decomposition, IEEE Access 7: 83962–83973.10.1109/ACCESS.2019.2925196
Li, F., Yuan, L., Zhang, K. and Li, W. (2019b). A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix, Textile Research Journal 90(7–8): 776–796, DOI: 10.1177/0040517519879904.10.1177/0040517519879904
Li, Y., Zhao, W. and Pan, J. (2016). Deformable patterned fabric defect detection with fisher criterion-based deep learning, IEEE Transactions on Automation Science and Engineering 14(2): 1256–1264.10.1109/TASE.2016.2520955
Lian, J., Jia, W., Zareapoor, M., Zheng, Y., Luo, R., Jain, D.K. and Kumar, N. (2019). Deep learning based small surface defect detection via exaggerated local variation-based generative adversarial network, IEEE Transactions on Industrial Informatics 16(2): 1343–1351.10.1109/TII.2019.2945403
Lizarraga-Morales, R.A., Correa-Tome, F.E., Sanchez-Yanez, R.E. and Cepeda-Negrete, J. (2019). On the use of binary features in a rule-based approach for defect detection on patterned textiles, IEEE Access 7: 18042–18049.10.1109/ACCESS.2019.2896078
Sun, J., Wang, P., Luo, Y.-K. and Li, W. (2019). Surface defects detection based on adaptive multiscale image collection and convolutional neural networks, IEEE Transactions on Instrumentation and Measurement 68(12): 4787–4797.10.1109/TIM.2019.2899478
Wang, R., Guo, Q., Lu, S. and Zhang, C. (2019b). Tire defect detection using fully convolutional network, IEEE Access 7: 43502–43510.10.1109/ACCESS.2019.2908483
Wei, B., Hao, K., Tang, X.-s. and Ding, Y. (2019). A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes, Textile Research Journal 89(17): 3539–3555.10.1177/0040517518813656
Xie, H., Zhang, Y. and Wu, Z. (2019). Fabric defect detection method combing image pyramid and direction template, IEEE Access 7: 182320–182334.10.1109/ACCESS.2019.2959880
Yang, H., Chen, Y., Song, K. and Yin, Z. (2019). Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects, IEEE Transactions on Automation Science and Engineering 16(3): 1450–1467.10.1109/TASE.2018.2886031
Yu, H., Li, Q., Tan, Y., Gan, J., Wang, J., Geng, Y.-a. and Jia, L. (2018). A coarse-to-fine model for rail surface defect detection, IEEE Transactions on Instrumentation and Measurement 68(3): 656–666.10.1109/TIM.2018.2853958
Zhang, Z., Wen, G. and Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding, Journal of Manufacturing Processes 45: 208–216.10.1016/j.jmapro.2019.06.023