Have a personal or library account? Click to login

Queueing Systems with Random Volume Customers and a Sectorized Unlimited Memory Buffer

Open Access
|Sep 2021

References

  1. Alexandrov, A. and Kaz, B. (1973). Non-homogeneous demands flows service, Izvestiya AN SSSR: Tekhnicheskaya Kibernetika (2): 47–53, (in Russian).
  2. Asmussen, S. (2003). Applied Probability and Queues, 2nd Edn, Springer, New York.
  3. Bocharov, P., D’Apice, C., Pechinkin, A. and Salerno, S. (2004). Queueing Theory, VSP, Utrecht/Boston.10.1515/9783110936025
  4. Boxma, O. (1989). Workloads and waiting times in single-server systems with multiple customer classes, Queueing Systems 5: 185–214, DOI: 10.1007/BF01149192.10.1007/BF01149192
  5. Cascone, A., Manzo, R., Pechinkin, A. and Shorgin, S. (2010). A Geom/G/1/n queueing system with LIFO discipline, service interruptions and resumption, and restrictions on the total volume of demands, Proceedings of the World Congress on Engineering 2010, London, UK, Vol. III.
  6. Chen, X., Stidwell, A. and Harris, M. (2009). Radiotelecommunications apparatus and method for communications internet data packets containing different types of data, Technical report, US Patent No. 7,558,240 B2, patents.google.com/patent/US7558240B2/en.
  7. Dudin, S., Kim, C., Dudina, O. and Baek, J. (2013). Queueing system with heterogeneous customers as a model of a call center with a call–back for lost customers, Mathematical Problems in Engineering 2013, Article ID: 983723, DOI: 10.1155/2013/983723.10.1155/2013/983723
  8. Fiems, D. and De Vuyst, S. (2018). From exhaustive vacation queues to preemptive priority queues with general interarrival times, International Journal of Applied Mathematics and Computer Science 28(4): 695–704, DOI: 10.2478/amcs-2018-0053.10.2478/amcs-2018-0053
  9. Guo, P. and Zipkin, P. (2007). Analysis and comparison of queues with different levels of delay information, Management Science 53(6): 962–970, DOI: 10.1287/mnsc.1060.0686.10.1287/mnsc.1060.0686
  10. Ivlev, V. (2002). Indeterminate forms of many variables functions. Part I, Education of Mathematics 23(4): 90–100, (in Russian).
  11. Ivlev, V. (2003). Indeterminate forms of many variables functions. Part II, Education of Mathematics 26(3): 77–85, (in Russian).
  12. Juneja, S., Raheja, T. and Shimkin, N. (2012). The concert queueing game with a random volume of arrivals, in B. Gaujal et al. (Eds), Proceedings of the 6th International ICST Conference on Performance Evaluation Methodologies and Tools, IEEE, New York, pp. 317–325, DOI: 10.4108/valuetools.2012.250166.10.4108/valuetools.2012.250166
  13. Kerobyan, K., Covington, R., Kerobyan, R. and Enakoutsa, K. (2018). An infinite-server queueing MMAPk/Gk/∞ model in semi-Markov random environment subject to catastrophes, in A. Dudin, et al. (Eds), Communications in Computer and Information Science, Springer, Cham, pp. 195–212, DOI: 10.1007/978-3-319-97595-5_16.10.1007/978-3-319-97595-5_16
  14. Kim, H.-K. (2002). System and method for processing multimedia packets for a network, Technical report, US Patent No. 7,236,481 B2, patents.google.com/patent/US7236481B2/en.
  15. Kim, J. and Ward, A. (2013). Dynamic scheduling of a GI/GI/1 + GI queue with multiple customer classes, Queueing Systems 75: 339–384, DOI: 10.1007/s11134-012-9325-7.10.1007/s11134-012-9325-7
  16. Lisovskaya, E., Moiseeva, S., Pagano, M. and Potatueva, V. (2017). Study of the MMP P/GI/∞ queueing system with random customers’ capacities, Informatics and Applications 11(4): 109–117, DOI: 10.14357/19922264170414.10.14357/19922264170414
  17. Lisovskaya, E., Moiseeva, S. and Pagano, M. (2018). Multiclass GI/GI/∞ queueing systems with random resource requirements, in A. Dudin et al. (Eds), Communications in Computer and Information Science, Vol. 912, Springer, Cham, pp. 129–142, DOI: 10.1007/978-3-319-97595-5_11.10.1007/978-3-319-97595-5_11
  18. Matalytsky, M. and Zając, P. (2019). Application of HM-network with positive and negative claims for finding of memory volumes in information systems, Journal of Applied Mathematics and Computational Mechanics 18(1): 41–51, DOI: 10.17512/jamcm.2019.1.04.10.17512/jamcm.2019.1.04
  19. Matveev, V.F. and Ushakov, V.G. (1984). Queueing Systems, Moscow University Edition, Moscow, (in Russian).
  20. Naumov, V., Samouylov, K., Yarkina, N., Sopin, E., Andreev, S. and Samuylov, A. (2015). LTE performance analysis using queuing systems with finite resources and random requirements, 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, pp. 100–103, DOI: 10.1109/ICUMT.2015.7382412.10.1109/ICUMT.2015.7382412
  21. Naumov, V., Samuilov, K. and Samuilov, A. (2016). On the total amount of resources occupied by serviced customers, Automation and Remote Control 77: 1419–1427, DOI: 10.1134/S0005117916080087.10.1134/S0005117916080087
  22. Naumov, V. and Samuilov, K. (2018). Analysis of networks of the resource queuing systems, Automation and Remote Control 79: 822–829, DOI: 10.1134/S0005117918050041.10.1134/S0005117918050041
  23. Nowak, B., Piechowiak, M., Stasiak, M. and Zwierzykowski, P. (2020). An analytical model of a system with priorities servicing a mixture of different elastic traffic streams, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(2): 263–270, DOI: 10.24425/bpasts.2020.133111.
  24. Rumyantsev, A. and Morozov, E. (2017). Stability criterion of a multiserver model with simultaneous service, Annals of Operation Research 252: 29–39, DOI: 10.1007/s10479-015-1917-2.10.1007/s10479-015-1917-2
  25. Samouylov, K., Sopin, E. and Vikhrova, O. (2015). Analyzing blocking probability in LTE wireless network via queuing system with finite amount of resources, in A. Dudin et al. (Eds), Communications in Computer and Information Science, Springer, Cham, pp. 393–403, DOI: 10.1007/978-3-319-25861-4_33.10.1007/978-3-319-25861-4_33
  26. Samouylov, K., Sopin, E., Vikhrova, O. and Shorgin, S. (2017). Convolution algorithm for normalization constant evaluation in queuing system with random requirements, AIP Conference Proceedings 1863(090004): 090004-1–090004-3, DOI: 10.1063/1.4992269.10.1063/1.4992269
  27. Samouylov, K., Gaidamaka, Y. and Sopin, E. (2018). Simplified analysis of queueing systems with random requirements, in J. Pilz et al. (Eds), Statistics and Simulation. IWS 2015. Springer Proceedings in Mathematics and Statistics, Springer, Cham, pp. 381–390, DOI: 10.1007/978-3-319-76035-3_27.10.1007/978-3-319-76035-3_27
  28. Schwartz, M. (1977). Computer-Communication Network Design and Analysis, Prentice-Hall, Englewood Cliffs.
  29. Schwartz, M. (1987). Telecommunication Networks: Protocols, Modeling and Analysis, Addison-Wesley Publishing Company, New York.
  30. Sengupta, B. (1984). The spatial requirements of an M/G/1 queue, or: How to design for buffer space, in F. Baccelli and G. Fayolle (Eds), Modelling and Performance Evaluation Methodology, Springer, Heidelberg, pp. 547–562.10.1007/BFb0005191
  31. Shun-Chen, N. (1980). A single server queueing loss model with heterogeneous arrival and service, Operations Research 28(3): 584–593, DOI: 10.1287/opre.28.3.584.10.1287/opre.28.3.584
  32. Tikhonenko, O. (2005). Generalized Erlang problem for service systems with finite total capacity, Problems of Information Transmission 41(3): 243–253, DOI: 10.1007/s11122-005-0029-z.10.1007/s11122-005-0029-z
  33. Tikhonenko, O. (2015). Determination of loss characteristics in queueing systems with demands of random space requirement, in A. Kwiecień et al. (Eds), Communications in Computer and Information Science, Springer, Cham, pp. 209–215, DOI: 10.1007/978-3-319-25861-4_18.10.1007/978-3-319-25861-4_18
  34. Tikhonenko, O. and Kempa, W.M. (2016). Performance evaluation of an M/G/N-type queue with bounded capacity and packet dropping, International Journal of Applied Mathematics and Computer Science 26(4): 841–854, DOI: 10.1515/amcs-2016-0060.10.1515/amcs-2016-0060
  35. Tikhonenko, O. and Ziółkowski, M. (2018). Single-server queueing system with external and internal customers, Bulletin of the Polish Academy of Sciences: Technical Sciences 66(4): 539–551, DOI: 10.24425/124270.
  36. Tikhonenko, O. and Ziółkowski, M. (2019). Queueing systems with non–homogeneous customers and infinite sectorized memory space, in A. Kwiecień et al. (Eds), Communications in Computer and Information Science, Springer, Cham, pp. 316–329, DOI: 10.1007/978-3-030-21952-9_24.10.1007/978-3-030-21952-9_24
  37. Tikhonenko, O., Ziółkowski, M. and Kurkowski, M. (2019). M/⃗G/n/(0, V ) Erlang queueing system with non-homogeneous customers, non-identical servers and limited memory space, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(3): 489–500, DOI: 10.24425/bpasts.2019.129648.
  38. Yashkov, S. and Yashkova, A. (2007). Processor sharing: A survey of the mathematical theory, Automation and Remote Control 68(9): 1662–1731, DOI: 10.1134/S0005117907090202.10.1134/S0005117907090202
  39. Zhernovyi, Y. and Kopytko, B. (2016). The potentials method for the M/G/1/m queue with customer dropping and hysteretic strategy of the service time change, Journal of Applied Mathematics and Computational Mechanics 15(1): 197–210, DOI: 10.17512/jamcm.2016.1.20.10.17512/jamcm.2016.1.20
  40. Ziółkowski, M. and Tikhonenko, O. (2018). Multiserver queueing system with non-homogeneous customers and sectorized memory space, in A. Kwiecień et al. (Eds), Communications in Computer and Information Science, Vol. 860, Springer, Cham, pp. 272–285, DOI: 10.1007/978-3-319-92459-5_22.10.1007/978-3-319-92459-5_22
DOI: https://doi.org/10.34768/amcs-2021-0032 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 471 - 486
Submitted on: Mar 17, 2021
Accepted on: Jul 16, 2021
Published on: Sep 27, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Oleg Tikhonenko, Marcin Ziółkowski, Wojciech M. Kempa, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.