Ahmed, M.M. and Isa, N.A.M. (2017). Knowledge base to fuzzy information granule: A review from the interpretability-accuracy perspective, Applied Soft Computing 54: 121–140.10.1016/j.asoc.2016.12.055
Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O. and Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling, Soft Computing 10(9): 717–734.10.1007/s00500-005-0002-1
Bargiela, A. and Pedrycz, W. (2006). The roots of granular computing, 2006 IEEE International Conference on Granular Computing, Atlanta, USA, pp. 806–809.
Bisi, C., Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F.G. (2017). Micro and macro models of granular computing induced by the indiscernibility relation, Information Sciences 388–389: 247–273.10.1016/j.ins.2017.01.023
Botta, A., Lazzerini, B., Marcelloni, F. and Stefanescu, D.C. (2009). Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, Soft Computing 13(5): 437–449.10.1007/s00500-008-0360-6
Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neuro-computing 135: 203–217.10.1016/j.neucom.2013.12.031
Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, Journal Cybernetics 3(3): 32–57.10.1080/01969727308546046
Evsukoff, A.G., Galichet, S., de Lima, B.S. and Ebecken, N.F. (2009). Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets and Systems 160(7): 857–881.10.1016/j.fss.2008.08.010
Gacto, M.J., Alcalá, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences 181(20): 4340–4360.10.1016/j.ins.2011.02.021
Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O. and Prieto, A. (2005). TASE, a Taylor series-based fuzzy system model that combines interpretability and accuracy, Fuzzy Sets and Systems 153(3): 403–427.10.1016/j.fss.2005.01.012
Hu, X., Pedrycz, W., Wu, G. and Wang, X. (2017). Data reconstruction with information granules: An augmented method of fuzzy clustering, Applied Soft Computing 55: 523–532.10.1016/j.asoc.2017.02.014
Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics 43(6): 1781–1795.10.1109/TSMCB.2012.2230253
Juang, C.-F. and Lin, C.-T. (1998). An online self-constructing neural fuzzy inference network and its applications, IEEE Transactions on Fuzzy Systems 6(1): 12–32.10.1109/91.660805
Juang, C.F. and Tsao, Y.W. (2008). A type-2 self-organizing neural fuzzy system and its FPGA implementation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38(6): 1537–1548.10.1109/TSMCB.2008.927713
Pedrycz, A., Hirota, K., Pedrycz, W. and Dong, F. (2012). Granular representation and granular computing with fuzzy sets, Fuzzy Sets and Systems 203: 17–32.10.1016/j.fss.2012.03.009
Pedrycz, W. (1998). Shadowed sets: Representing and processing fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28(1): 103–109.10.1109/3477.65858418255928
Pedrycz, W., Hmouz, R.A., Balamash, A.S. and Morfeq, A. (2015a). Hierarchical granular clustering: An emergence of information granules of higher type and higher order, IEEE Transactions on Fuzzy Systems 23(6): 2270–2283.10.1109/TFUZZ.2015.2417896
Pedrycz, W. and Homenda, W. (2013). Building the fundamentals of granular computing: A principle of justifiable granularity, Applied Soft Computing 13(10): 4209–4218.10.1016/j.asoc.2013.06.017
Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015b). Data description: A general framework of information granules, Knowledge-Based Systems 80: 98–108.10.1016/j.knosys.2014.12.030
Qian, Y., Liang, J., Wu, W.-Z. and Dang, C. (2011). Information granularity in fuzzy binary GrC model, IEEE Transactions on Fuzzy Systems 19(2): 253–264.10.1109/TFUZZ.2010.2095461
Reyes-Galaviz, O.F. and Pedrycz, W. (2015). Granular fuzzy models: Analysis, design, and evaluation, International Journal of Approximate Reasoning 64: 1–19.10.1016/j.ijar.2015.06.005
Salehi, S., Selamat, A. and Fujita, H. (2015). Systematic mapping study on granular computing, Knowledge-Based Systems 80: 78–97.10.1016/j.knosys.2015.02.018
Shifei, D., Li, X., Hong, Z. and Liwen, Z. (2010). Research and progress of cluster algorithms based on granular computing, International Journal of Digital Content Technology and Its Applications 4(5): 96–104.10.4156/jdcta.vol4.issue5.11
Siminski, K. (2017). Interval type-2 neuro-fuzzy system with implication-based inference mechanism, Expert Systems with Applications 79C: 140–152.10.1016/j.eswa.2017.02.046
Siminski, K. (2019). NFL—free library for fuzzy and neuro-fuzzy systems, in S. Kozielski et al. (Eds), Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis, Springer International Publishing, Cham, pp. 139–150.10.1007/978-3-030-19093-4_11
Siminski, K. (2020). GrFCM—Granular clustering of granular data, in A. Gruca et al. (Eds), Man–Machine Interactions 6, Springer, Cham, pp. 111–121.10.1007/978-3-030-31964-9_11
Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science 31(2): 303–319, DOI: 10.34768/amcs-2021-0021.
Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.10.1109/TSMC.1985.6313399
Wang, D., Pedrycz, W. and Li, Z. (2019). Granular data aggregation: An adaptive principle of the justifiable granularity approach, IEEE Transactions on Cybernetics 49(2): 1–10.10.1109/TCYB.2017.2774831
Yang, X., Li, T., Liu, D. and Fujita, H. (2019). A temporal-spatial composite sequential approach of three-way granular computing, Information Sciences 486: 171–189.10.1016/j.ins.2019.02.048
Yao, J.T., Vasilakos, A.V. and Pedrycz, W. (2013). Granular computing: Perspectives and challenges, IEEE Transactions on Cybernetics 43(6): 1977–1989.10.1109/TSMCC.2012.2236648
Yao, Y. (2007). The art of granular computing, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer, Berlin/Heidelberg, pp. 101–112.10.1007/978-3-540-73451-2_12
Yao, Y. (2008). Granular computing: Past, present and future, 2008 IEEE International Conference on Granular Computing, GrC 2008, Hangzhou, China, pp. 80–85.
Yao, Y. (2020). Three-way granular computing, rough sets, and formal concept analysis, International Journal of Approximate Reasoning 116: 106–125.10.1016/j.ijar.2019.11.002
Yao, Y. and Zhong, N. (2007). Granular computing, in B.W. Wah (Ed.), Wiley Encyclopedia of Computer Science and Engineering, Wiley, Hoboken.10.1002/9780470050118.ecse468
Yen, J., Wang, L. and Gillespie, C. W. (1998). Improving the interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Transactions on Fuzzy Systems 6(4): 530–537.10.1109/91.728447
Zadeh, L.A. (1979). Fuzzy sets and information granularity, in N. Gupta et al. (Eds), Advances in Fuzzy Set Theory and Applications, North-Holland Publishing, Amsterdam, pp. 3–18.
Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90(2): 111–127.10.1016/S0165-0114(97)00077-8
Zadeh, L.A. (2002). From computing with numbers to computing with words—From manipulation of measurements to manipulation of perceptions, International Journal of Applied Mathematics and Computer Science 12(3): 307–324.10.1063/1.1388678