Have a personal or library account? Click to login
Open Access
|Sep 2021

References

  1. Azzini, A., Marrara, S., Sassi, R. and Scotti, F. (2008). A fuzzy approach to multimodal biometric continuous authentication, Fuzzy Optimization and Decision Making 7(243): 243–256.10.1007/s10700-008-9034-1
  2. Baldwin, J. (1979a). Advances in Fuzzy Set Theory and Applications, North-Holland, Amsterdam, pp. 93–115.
  3. Baldwin, J. (1979b). Fuzzy logic and fuzzy reasoning, International Journal of Man-Machine Studies 11(4): 465–480.10.1016/S0020-7373(79)80038-3
  4. Baldwin, J. (1979c). A new approach to approximate reasoning using a fuzzy logic, Fuzzy Sets and Systems 2(4): 309–325.10.1016/0165-0114(79)90004-6
  5. Bellman, R. and Zadeh, L. (1977). Modern Uses of Multiple-Valued Logic. Episteme, Springer, Dordrecht, pp. 103–165.
  6. Cordon, O., Herrera, F. and Peregrin, A. (1997). Applicability of the fuzzy operators in the design of fuzzy logic controllers, Fuzzy Sets and Systems 86(1): 15–41.10.1016/0165-0114(95)00367-3
  7. Czabanski, R., Jezewski, M. and Leski, J. (2017). Introduction to Fuzzy Systems, Springer, Cham, pp. 23–43.
  8. Czogała, E. and Kowalczyk, R. (1996). Investigation of selected fuzzy operations and implications for engineering, IEEE 5th International Conference Fuzzy Systems, New Orleans, USA, pp. 879–885.
  9. Czogała, E. and Łęski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica, Springer-Verlag, Heidelberg.10.1007/978-3-7908-1853-6
  10. Czogała, E. and Łęski, J. (2001). On equivalence of approximate reasoning results using different interpretations of if-then rules, Fuzzy Sets and Systems 117(2): 279–296.10.1016/S0165-0114(98)00412-6
  11. Dubois, D. and Prade, H. (1999). Fuzzy sets in approximate reasoning. Part 1: Inference with possibility distribution, Fuzzy Sets and Systems 100(Supp. 1): 73–132.
  12. Dubois, D. and Prade, H. (1996). What are fuzzy rules and how to use them, Fuzzy Sets and Systems 84(2): 169–185.10.1016/0165-0114(96)00066-8
  13. Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
  14. Ho, C., Li, J. and Gwak, S. (2010). Research of a new fuzzy reasoning method by moving of fuzzy membership functions, 2010 International Symposium on Intelligence Information Processing and Trusted Computing, Huang-gang, China, pp. 297–300.
  15. Izquierdo, S.S. and Izquierdo, L.R. (2018). Mamdani fuzzy systems for modelling and simulation: A critical assessment, Journal of Artificial Societies and Social Simulation 21(3): 2.10.18564/jasss.3660
  16. Klir, G.J., Clair, U.S. and Yuan, B. (1997). Fuzzy Set Theory: Foundations and Applications, Prentice Hall, Upper Saddle River.
  17. Kudłacik, P. (2010). Advantages of an approximate reasoning based on a fuzzy truth value, Medical Informatics & Technologies 16: 125–132.
  18. Kudłacik, P. (2012). Performance evaluation of Baldwin’s fuzzy reasoning for large knowledge bases, Medical Informatics & Technologies 20: 29–38.
  19. Kudłacik, P. (2013). An analysis of using triangular truth function in fuzzy reasoning based on a fuzzy truth value, Medical Informatics & Technologies 22: 103–110.
  20. Kudłacik, P. and Łęski, J. (2021). Practical aspects of equivalence of Baldwin’s and Zadeh’s fuzzy inference, Journal of Intelligent & Fuzzy Systems 40(3): 4617–4636.10.3233/JIFS-201443
  21. Mamdani, E. and Assilan, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies 20(2): 1–13.10.1016/S0020-7373(75)80002-2
  22. Mazandarani, M. and Xiu, L. (2020). Fractional fuzzy inference system: The new generation of fuzzy inference systems, IEEE Access 8: 126066–126082.10.1109/ACCESS.2020.3008064
  23. Mizumoto, M. and Zimmermann, H.-J. (1982). Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems 8(3): 253–283.10.1016/S0165-0114(82)80004-3
  24. Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015.
  25. Rutkowski, L. (2008). Computational Intelligence, Methods and Techniques, Springer, Berlin/Heidelberg.
  26. Tong, R.M. and Festathiou, J. (1982). A critical assessment of truth function modification and its use in approximate reasoning, Fuzzy Sets and Systems 7(1): 103–108.10.1016/0165-0114(82)90044-6
  27. Ughetto, L., Dubois, D. and Prade, H. (1999). Implicative and conjunctive fuzzy rules—A tool for reasoning from knowledge and examples, 16th National Conference on Artificial Intelligence/11th Annual Conference on Innovative Applications of Artificial Intelligence, Orlando, USA, pp. 214–219.
  28. Yagger, R. (1996). On the interpretation of fuzzy if-then rules, Applied Intelligence 6(2): 141–151.10.1007/BF00117814
  29. Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics 3(1): 28–44.10.1109/TSMC.1973.5408575
  30. Zadeh, L. (1975). Fuzzy logic and approximate reasoning, Syntheses 30(3): 407–428.10.1007/BF00485052
  31. Zimmermann, H.-J. (1985). Fuzzy Set Theory and Its Applications, Springer, Dordrecht.10.1007/978-94-015-7153-1
DOI: https://doi.org/10.34768/amcs-2021-0029 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 431 - 444
Submitted on: Dec 11, 2020
Accepted on: Jul 5, 2021
Published on: Sep 27, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Przemysław Kudłacik, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.