Have a personal or library account? Click to login

An Incomplete Soft Set and Its Application in MCDM Problems with Redundant and Incomplete Information

By:
Open Access
|Sep 2021

References

  1. Akram, M., Shumaiza and Arshad, M. (2020). Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Computational and Applied Mathematics 39(1), Article no. 7.
  2. Alkhazaleh, S. and Salleh, A.R. (2012). Generalised interval-valued fuzzy soft set, Journal of Applied Mathematics 2012, Article no. 870504.
  3. Chen, D.G., Tsang, E.C.C., Yeung, D.S. and Wang, X.Z. (2005). The parameterization reduction of soft sets and its applications, Computers and Mathematics with Applications 49(5–6): 757–763.10.1016/j.camwa.2004.10.036
  4. Das, S., Kar, M.B., Kar, S. and Pal, T. (2018). An approach for decision making using intuitionistic trapezoidal fuzzy soft set, Annals of Fuzzy Mathematics and Informatics 16(1): 99–116.10.30948/afmi.2018.16.1.99
  5. Deng, T. and Wang, X. (2013). An object-parameter approach to predicting unknown data in incomplete fuzzy soft sets, Applied Mathematical Modelling 37(6): 4139–4146.10.1016/j.apm.2012.09.010
  6. Garg, H. and Arora, R. (2018). Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making, Journal of the Operational Research Society 69(11): 1711–1724.10.1080/01605682.2017.1409159
  7. Gau, W.L. and Buehrer, D.J. (1993). Vague sets, IEEE Transactions on Systems Man and Cybernetics 23(2): 610–614.10.1109/21.229476
  8. Goguen, J.A. (1967). L-fuzzy sets, Journal of Mathematical Analysis and Applications 18(1): 145–174.10.1016/0022-247X(67)90189-8
  9. Gong, K., Wang, P. and Peng, Y. (2017). Fault-tolerant enhanced bijective soft set with applications, Applied Soft Computing 54: 431–439.10.1016/j.asoc.2016.06.009
  10. Gong, K., Xiao, Z. and Zhang, X. (2010). The bijective soft set with its operations, Computers and Mathematics with Applications 60(8): 2270–2278.10.1016/j.camwa.2010.08.017
  11. Hong, D.H. and Choi, C.H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems 114(1): 103–113.10.1016/S0165-0114(98)00271-1
  12. Inbarani, H.H., Kumar, S.U., Azar, A.T. and Hassanien, A.E. (2018). Hybrid rough-bijective soft set classification system, Neural Computing and Applications 29(8): 67–78.10.1007/s00521-016-2711-z
  13. Jiang, Y., Tang, Y., Chen, Q., Liu, H. and Tang, J. (2010). Interval-valued intuitionistic fuzzy soft sets and their properties, Computers and Mathematics with Applications 60(3): 906–918.10.1016/j.camwa.2010.05.036
  14. Khan, A. and Zhu, Y. (2020). New algorithms for parameter reduction of intuitionistic fuzzy soft sets, Computational and Applied Mathematics 39(3), Aricle no. 232.
  15. Kong, Z., Gao, L.Q., Wang, L.F. and Li, S. (2008). The normal parameter reduction of soft sets and its algorithm, Computers and Mathematics with Applications 56(12): 3029–3037.10.1016/j.camwa.2008.07.013
  16. Kryszkiewicz, M. (1999). Rules in incomplete information systems, Information Sciences 113(3–4): 271–292.10.1016/S0020-0255(98)10065-8
  17. Li, M.-Y., Fan, Z.-P. and You, T.-H. (2018). Screening alternatives considering different evaluation index sets: A method based on soft set theory, Applied Soft Computing 64: 614–626.10.1016/j.asoc.2017.12.037
  18. Li, Z., Wen, G. and Xie, N. (2015). An approach to fuzzy soft sets in decision making based on grey relational analysis and Dempster–Shafer theory of evidence: An application in medical diagnosis, Artificial Intelligence in Medicine 64(3): 161–71.10.1016/j.artmed.2015.05.002
  19. Liu, Y., Qin, K., Rao, C. and Mahamadu Alhaji, M. (2017). Object-parameter approaches to predicting unknown data in an incomplete fuzzy soft set, International Journal of Applied Mathematics and Computer Science 27(1): 157–167, DOI: 10.1515/amcs-2017-0011.10.1515/amcs-2017-0011
  20. Maji, P.K. and Roy, A.R. (2002). An application of soft sets in a decision making problem, Computers and Mathematics with Applications 44(8-9): 1077–1083.10.1016/S0898-1221(02)00216-X
  21. Majumdar, P. and Samanta, S.K. (2010). Generalised fuzzy soft sets, Computers and Mathematics with Applications 59(4): 1425–1432.10.1016/j.camwa.2009.12.006
  22. Meng, D., Zhang, X. and Qin, K. (2011). Soft rough fuzzy sets and soft fuzzy rough sets, Computers and Mathematics with Applications 62(12): 4635–4645.10.1016/j.camwa.2011.10.049
  23. Molodtsov, D. (1999). Soft set theory—first results, Computers and Mathematics with Applications 37(4–5): 19–31.10.1016/S0898-1221(99)00056-5
  24. Pawlak, Z. (1984). Rough classification, International Journal of Man-Machine Studies 20(5): 469–483.10.1016/S0020-7373(84)80022-X
  25. Pawlak, Z. (1985). Rough sets and decision tables, in A. Skowron (Ed.), Computation Theory. SCT 1984, Lecture Notes in Computer Science, Vol. 208, Springer, Berlin, pp. 187–196.10.1007/3-540-16066-3_18
  26. Peng, X. and Yang, Y. (2017). Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight, Applied Soft Computing 54: 415–430.10.1016/j.asoc.2016.06.036
  27. Petchimuthu, S., Garg, H., Kamaci, H. and Atagun, A.O. (2020). The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM, Computational and Applied Mathematics 39(2), Article no. 68.
  28. Qin, H., Ma, X., Herawan, T. and Zain, J.M. (2012). DFIS: A novel data filling approach for an incomplete soft set, International Journal of Applied Mathematics and Computer Science 22(4): 817–828, DOI: 10.2478/v10006-012-0060-3.10.2478/v10006-012-0060-3
  29. Roy, A.R. and Maji, P.K. (2007). A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics 203(2): 412–418.10.1016/j.cam.2006.04.008
  30. Sun, B., Zhang, M., Wang, T. and Zhang, X. (2020). Diversified multiple attribute group decision-making based on multigranulation soft fuzzy rough set and TODIM method, Computational and Applied Mathematics 39(3), Article no. 186.
  31. Tiwari, V., Jain, P.K. and Tandon, P. (2017). A bijective soft set theoretic approach for concept selection in design process, Journal of Engineering Design 28(2): 100–117.10.1080/09544828.2016.1274718
  32. Tiwari, V., Jain, P.K. and Tandon, P. (2019). An integrated Shannon entropy and TOPSIS for product design concept evaluation based on bijective soft set, Journal of Intelligent Manufacturing 30(4): 1645–1658.10.1007/s10845-017-1346-y
  33. Xu, W., Pan, Y., Chen, W. and Fu, H. (2019). Forecasting corporate failure in the Chinese energy sector: A novel integrated model of deep learning and support vector machine, Energies 12(12), Article no. 2251.
  34. Yang, J. and Yao, Y. (2020). Semantics of soft sets and three-way decision with soft sets, Knowledge-Based Systems 194, Article no. 105538.
  35. Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8(3): 338–353.10.1016/S0019-9958(65)90241-X
  36. Zhang, Z.M. and Zhang, S.H. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets, Applied Mathematical Modelling 37(7): 4948–4971.10.1016/j.apm.2012.10.006
  37. Zou, Y. and Xiao, Z. (2008). Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems 21(8): 941–945.10.1016/j.knosys.2008.04.004
DOI: https://doi.org/10.34768/amcs-2021-0028 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 417 - 430
Submitted on: Feb 23, 2021
Accepted on: Jun 7, 2021
Published on: Sep 27, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Sisi Xia, Haoran Yang, Lin Chen, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.