Have a personal or library account? Click to login

Forecasting Models for Chaotic Fractional–Order Oscillators Using Neural Networks

Open Access
|Sep 2021

References

  1. Abdullah, S., Ismail, M., Ahmed, A.N. and Abdullah, A.M. (2019). Forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support, Atmosphere 10(11): 667.10.3390/atmos10110667
  2. Azar, A.T. and Vaidyanathan, S. (2015). Chaos Modeling and Control Systems Design, Springer, Cham.10.1007/978-3-319-13132-0
  3. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019a). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.10.2478/amcs-2019-0023
  4. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Elamvazuthi, I. and Devan, A.M. (2019b). Design and analysis of fractional-order oscillators using SCILAB, 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, pp. 311–316.10.1109/SCORED.2019.8896260
  5. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. and Harindran, V.R. (2020). Fractional-order Systems and PID Controllers, Springer, Cham.10.1007/978-3-030-33934-0
  6. Bingi, K., Prusty, B.R., Kumra, A. and Chawla, A. (2021). Torque and temperature prediction for permanent magnet synchronous motor using neural networks, 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, pp. 1–6.
  7. Cao, J., Ma, C., Xie, H. and Jiang, Z. (2010). Nonlinear dynamics of Duffing system with fractional order damping, Journal of Computational and Nonlinear Dynamics 5(4), Article ID: 041012, DOI: 10.1115/1.4002092.10.1115/1.4002092
  8. Cattani, C., Srivastava, H.M. and Yang, X.-J. (2015). Fractional Dynamics, De Gruyter, Warsaw.10.1515/9783110472097
  9. Corinto, F., Forti, M. and Chua, L.O. (2021). Nonlinear Circuits and Systems with Memristors: Nonlinear Dynamics and Analogue Computing via the Flux-Charge Analysis Method, Springer, Cham.10.1007/978-3-030-55651-8
  10. De Oliveira, E.C. and Tenreiro Machado, J.A. (2014). A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering 2014, Article ID: 238459, DOI: 10.1155/2014/238459.10.1155/2014/238459
  11. Giresse, T.A. and Crépin, K.T. (2017). Chaos generalized synchronization of coupled Mathieu–Van der Pol and coupled Duffing–Van der Pol systems using fractional order-derivative, Chaos, Solitons & Fractals 98: 88–100, DOI: 10.1016/j.chaos.2017.03.012.10.1016/j.chaos.2017.03.012
  12. Huang, W., Li, Y. and Huang, Y. (2020). Deep hybrid neural network and improved differential neuroevolution for chaotic time series prediction, IEEE Access 8: 159552–159565, DOI: 10.1109/ACCESS.2020.3020801.10.1109/ACCESS.2020.3020801
  13. Kabziński, J. (2018). Synchronization of an uncertain Duffing oscillator with higher order chaotic systems, International Journal of Applied Mathematics and Computer Science 28(4): 625–634, DOI: 10.2478/amcs-2018-0048.10.2478/amcs-2018-0048
  14. Kaczorek, T. and Sajewski, Ł. (2020). Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders, International Journal of Applied Mathematics and Computer Science 30(4): 641–647, DOI: 10.34768/amcs-2020-0047.
  15. Kanchana, C., Siddheshwar, P. and Yi, Z. (2020). The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models, Applied Mathematical Modelling 88: 349–366, DOI: 10.1016/j.apm.2020.06.062.10.1016/j.apm.2020.06.062
  16. Kuiate, G.F., Kingni, S.T., Tamba, V.K. and Talla, P.K. (2018). Three-dimensional chaotic autonomous Van der Pol–Duffing type oscillator and its fractional-order form, Chinese Journal of Physics 56(5): 2560–2573.10.1016/j.cjph.2018.08.003
  17. Li, Q. and Lin, R.-C. (2016). A new approach for chaotic time series prediction using recurrent neural network, Mathematical Problems in Engineering 2016, Article ID: 3542898, DOI: 10.1155/2016/3542898.10.1155/2016/3542898
  18. Liang, Y., Wang, G., Chen, G., Dong, Y., Yu, D. and Iu, H.H.-C. (2020). S-type locally active memristor-based periodic and chaotic oscillators, IEEE Transactions on Circuits and Systems I: Regular Papers 67(12): 5139–5152.10.1109/TCSI.2020.3017286
  19. Lu, Z., Hunt, B.R. and Ott, E. (2018). Attractor reconstruction by machine learning, Chaos: An Interdisciplinary Journal of Nonlinear Science 28(6): 061104.10.1063/1.503950829960382
  20. Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R. and Ott, E. (2017). Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4): 041102.10.1063/1.497966528456169
  21. Luo, W. and Cui, Y. (2020). Signal denoising based on Duffing oscillators system, IEEE Access 8: 86554–86563, DOI: 10.1109/ACCESS.2020.2992503.10.1109/ACCESS.2020.2992503
  22. Mainardi, F. (2018). Fractional Calculus: Theory and Applications, Multidisciplinary Digital Publishing Institute, Basel.10.3390/math6090145
  23. Miwadinou, C., Monwanou, A. and Chabi Orou, J. (2015). Effect of nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh–Duffing oscillator, International Journal of Bifurcation and Chaos 25(02): 1550024.10.1142/S0218127415500248
  24. Pan, I. and Das, S. (2018). Evolving chaos: Identifying new attractors of the generalised Lorenz family, Applied Mathematical Modelling 57: 391–405, DOI: 10.1016/j.apm.2018.01.015.10.1016/j.apm.2018.01.015
  25. Petras, I. (2010). Fractional-order memristor-based Chua’s circuit, IEEE Transactions on Circuits and Systems II: Express Briefs 57(12): 975–979.10.1109/TCSII.2010.2083150
  26. Petráš, I. (2011). Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, Berlin.10.1007/978-3-642-18101-6
  27. Salas, A.H. and El-Tantawy, S.A.E.-H. (2021). Analytical Solutions of Some Strong Nonlinear Oscillators, IntechOpen, London, DOI: 10.5772/intechopen.97677.10.5772/intechopen.97677
  28. Shaik, N.B., Pedapati, S.R., Othman, A., Bingi, K. and Abd Dzubir, F.A. (2021). An intelligent model to predict the life condition of crude oil pipelines using artificial neural networks, Neural Computing and Applications, DOI: 10.1007/s00521-021-06116-1.10.1007/s00521-021-06116-1
  29. Sheela, K.G. and Deepa, S.N. (2013). Review on methods to fix number of hidden neurons in neural networks, Mathematical Problems in Engineering 2013, Article ID: 425740, DOI: 10.1155/2013/425740.10.1155/2013/425740
  30. Shen, Y.-J., Wei, P. and Yang, S.-P. (2014). Primary resonance of fractional-order Van der Pol oscillator, Nonlinear Dynamics 77(4): 1629–1642.10.1007/s11071-014-1405-2
  31. Smith, J.S., Wu, B. and Wilamowski, B.M. (2018). Neural network training with Levenberg–Marquardt and adaptable weight compression, IEEE Transactions on Neural Networks and Learning Systems 30(2): 580–587.10.1109/TNNLS.2018.284677529994621
  32. Sun, Z., Xu, W., Yang, X. and Fang, T. (2006). Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback, Chaos, Solitons & Fractals 27(3): 705–714.10.1016/j.chaos.2005.04.041
  33. Ueta, T. and Tamura, A. (2012). Bifurcation analysis of a simple 3D oscillator and chaos synchronization of its coupled systems, Chaos, Solitons & Fractals 45(12): 1460–1468.10.1016/j.chaos.2012.08.007
  34. Vaidyanathan, S. and Azar, A.T. (2020). Backstepping Control of Nonlinear Dynamical Systems, Academic Press, Cambridge.
  35. Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P. and Koumoutsakos, P. (2018). Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2213): 20170844.10.1098/rspa.2017.0844599070229887750
  36. Wang, X., Jin, C., Min, X., Yu, D. and Iu, H.H.C. (2020). An exponential chaotic oscillator design and its dynamic analysis, IEEE/CAA Journal of Automatica Sinica 7(4): 1081–1086.10.1109/JAS.2020.1003252
  37. Wu, J.-L., Kashinath, K., Albert, A., Chirila, D., Prabhat and Xiao, H. (2020). Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems, Journal of Computational Physics 406, Article ID: 109209, DOI: 10.1016/j.jcp.2019.109209.10.1016/j.jcp.2019.109209
  38. Yang, Q., Sing-Long, C. and Reed, E. (2020). Rapid data-driven model reduction of nonlinear dynamical systems including chemical reaction networks using l1-regularization, Chaos: An Interdisciplinary Journal of Nonlinear Science 30(5): 053122.10.1063/1.513946332491878
  39. Zang, X., Iqbal, S., Zhu, Y., Liu, X. and Zhao, J. (2016). Applications of chaotic dynamics in robotics, International Journal of Advanced Robotic Systems 13(2): 60.10.5772/62796
DOI: https://doi.org/10.34768/amcs-2021-0026 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 387 - 398
Submitted on: Mar 17, 2021
Accepted on: Jul 6, 2021
Published on: Sep 27, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Kishore Bingi, B Rajanarayan Prusty, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.