Baake, M. and Schlägel, U. (2011). The Peano–Baker series, Proceedings of the Steklov Institute of Mathematics275(1): 155–159.10.1134/S0081543811080098
Balaska, H., Ladaci, S., Djouambi, A., Schulte, H. and Bourouba, B. (2020). Fractional order tube model reference adaptive control for a class of fractional order linear systems, International Journal of Applied Mathematics and Computer Science30(3): 501–515, DOI: 10.34768/amcs-2020-0037.
Bergounioux, M. and Bourdin, L. (2020). Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM: Control, Optimisation and Calculus of Variations26: 35, DOI: 10.1051/cocv/2019021.10.1051/cocv/2019021
Blagodatskikh, V.I. and Filippov, A.F. (1985). Differential inclusions and optimal control, Trudy Matematicheskogo Instituta Imeni VA Steklova169: 194–252.
Bourdin, L. (2018). Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differential and Integral Equations31(7/8): 559–594.
Chikrii, A. and Eidelman, S. (2000). Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order, Cybernetics and System Analysis36(3): 315–338.10.1007/BF02732983
Chikrii, A. and Matichin, I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo, and Miller–Ross, Journal of Automation and Information Sciences40(6): 1–11.10.1615/JAutomatInfScien.v40.i6.10
Datsko, B. and Gafiychuk, V. (2018). Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point, Fractional Calculus and Applied Analysis21(1): 237–253.10.1515/fca-2018-0015
Datsko, B., Podlubny, I. and Povstenko, Y. (2019). Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact, Mathematics7(5): 433.10.3390/math7050433
Dzieliński, A. and Czyronis, P. (2013). Fixed final time and free final state optimal control problem for fractional dynamic systems—Linear quadratic discrete-time case, Bulletin of the Polish Academy of Sciences: Technical Sciences61(3): 681–690.10.2478/bpasts-2013-0072
Eckert, M., Nagatou, K., Rey, F., Stark, O. and Hohmann, S. (2019). Solution of time-variant fractional differential equations with a generalized Peano–Baker series, IEEE Control Systems Letters3(1): 79–84.10.1109/LCSYS.2018.2852600
Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.10.2478/v10006-008-0020-0
Kaczorek, T. and Idczak, D. (2017). Cauchy formula for the time-varying linear systems with Caputo derivative, Fractional Calculus and Applied Analysis20(2): 494–505.10.1515/fca-2017-0025
Kamocki, R. (2014). Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences37(11): 1668–1686.10.1002/mma.2928
Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam.
Li, Y., Chen, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications59(5): 1810–1821.10.1016/j.camwa.2009.08.019
Luchko, Y. (2009). Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications351(1): 218–223.10.1016/j.jmaa.2008.10.018
Malesza, W., Macias, M. and Sierociuk, D. (2019). Analytical solution of fractional variable order differential equations, Journal of Computational and Applied Mathematics348: 214–236.10.1016/j.cam.2018.08.035
Martínez, L., Rosales, J., Carreño, C. and Lozano, J. (2018). Electrical circuits described by fractional conformable derivative, International Journal of Circuit Theory and Applications46(5): 1091–1100.10.1002/cta.2475
Matychyn, I. (2019). Analytical solution of linear fractional systems with variable coefficients involving Riemann–Liouville and Caputo derivatives, Symmetry11(11): 1366.10.3390/sym11111366
Matychyn, I. and Onyshchenko, V. (2015). Time-optimal control of fractional-order linear systems, Fractional Calculus and Applied Analysis18(3): 687–696.10.1515/fca-2015-0042
Matychyn, I. and Onyshchenko, V. (2018a). On time-optimal control of fractional-order systems, Journal of Computational and Applied Mathematics339: 245–257.10.1016/j.cam.2017.10.016
Matychyn, I. and Onyshchenko, V. (2018b). Optimal control of linear systems with fractional derivatives, Fractional Calculus and Applied Analysis21(1): 134–150.10.1515/fca-2018-0009
Matychyn, I. and Onyshchenko, V. (2019). Optimal control of linear systems of arbitrary fractional order, Fractional Calculus and Applied Analysis22(1): 170–179.10.1515/fca-2019-0011
Matychyn, I. and Onyshchenko, V. (2020). Solution of linear fractional order systems with variable coefficients, Fractional Calculus and Applied Analysis23(3): 753–763.10.1515/fca-2020-0037
Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego.
Si, X., Yang, H. and Ivanov, I.G. (2021). Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems, International Journal of Applied Mathematics and Computer Science31(1): 17–28, DOI: 10.34768/amcs-2021-0002.
Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science16(1): 129–140.
Skovranek, T., Macias, M., Sierociuk, D., Malesza, W., Dzielinski, A., Podlubny, I., Pocsova, J. and Petras, I. (2019). Anomalous diffusion modeling using ultracapacitors in domino ladder circuit, Microelectronics Journal84: 136–141.10.1016/j.mejo.2019.01.005