Have a personal or library account? Click to login

Time–Optimal Control of Linear Fractional Systems with Variable Coefficients

Open Access
|Sep 2021

References

  1. Aumann, R.J. (1965). Integrals of set-valued functions, Journal of Mathematical Analysis and Applications 12(1): 1–12.10.1016/0022-247X(65)90049-1
  2. Baake, M. and Schlägel, U. (2011). The Peano–Baker series, Proceedings of the Steklov Institute of Mathematics 275(1): 155–159.10.1134/S0081543811080098
  3. Balaska, H., Ladaci, S., Djouambi, A., Schulte, H. and Bourouba, B. (2020). Fractional order tube model reference adaptive control for a class of fractional order linear systems, International Journal of Applied Mathematics and Computer Science 30(3): 501–515, DOI: 10.34768/amcs-2020-0037.
  4. Bergounioux, M. and Bourdin, L. (2020). Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM: Control, Optimisation and Calculus of Variations 26: 35, DOI: 10.1051/cocv/2019021.10.1051/cocv/2019021
  5. Blagodatskikh, V.I. and Filippov, A.F. (1985). Differential inclusions and optimal control, Trudy Matematicheskogo Instituta Imeni VA Steklova 169: 194–252.
  6. Bourdin, L. (2018). Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differential and Integral Equations 31(7/8): 559–594.
  7. Chikrii, A. and Eidelman, S. (2000). Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order, Cybernetics and System Analysis 36(3): 315–338.10.1007/BF02732983
  8. Chikrii, A. and Matichin, I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo, and Miller–Ross, Journal of Automation and Information Sciences 40(6): 1–11.10.1615/JAutomatInfScien.v40.i6.10
  9. Datsko, B. and Gafiychuk, V. (2018). Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point, Fractional Calculus and Applied Analysis 21(1): 237–253.10.1515/fca-2018-0015
  10. Datsko, B., Podlubny, I. and Povstenko, Y. (2019). Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact, Mathematics 7(5): 433.10.3390/math7050433
  11. Diethelm, K. (2010). The Analysis of Fractional Differential Equations, Springer, Berlin/Heidelberg.10.1007/978-3-642-14574-2
  12. Dzieliński, A. and Czyronis, P. (2013). Fixed final time and free final state optimal control problem for fractional dynamic systems—Linear quadratic discrete-time case, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 681–690.10.2478/bpasts-2013-0072
  13. Eckert, M., Nagatou, K., Rey, F., Stark, O. and Hohmann, S. (2019). Solution of time-variant fractional differential equations with a generalized Peano–Baker series, IEEE Control Systems Letters 3(1): 79–84.10.1109/LCSYS.2018.2852600
  14. Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.10.2478/v10006-008-0020-0
  15. Kaczorek, T. and Idczak, D. (2017). Cauchy formula for the time-varying linear systems with Caputo derivative, Fractional Calculus and Applied Analysis 20(2): 494–505.10.1515/fca-2017-0025
  16. Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.10.1007/978-3-319-11361-6
  17. Kamocki, R. (2014). Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences 37(11): 1668–1686.10.1002/mma.2928
  18. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam.
  19. Li, Y., Chen, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications 59(5): 1810–1821.10.1016/j.camwa.2009.08.019
  20. Lorenzo, C.F. and Hartley, T.T. (2000). Initialized fractional calculus, International Journal of Applied Mathematics 3(3): 249–265.
  21. Luchko, Y. (2009). Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications 351(1): 218–223.10.1016/j.jmaa.2008.10.018
  22. Malesza, W., Macias, M. and Sierociuk, D. (2019). Analytical solution of fractional variable order differential equations, Journal of Computational and Applied Mathematics 348: 214–236.10.1016/j.cam.2018.08.035
  23. Martínez, L., Rosales, J., Carreño, C. and Lozano, J. (2018). Electrical circuits described by fractional conformable derivative, International Journal of Circuit Theory and Applications 46(5): 1091–1100.10.1002/cta.2475
  24. Matychyn, I. (2019). Analytical solution of linear fractional systems with variable coefficients involving Riemann–Liouville and Caputo derivatives, Symmetry 11(11): 1366.10.3390/sym11111366
  25. Matychyn, I. and Onyshchenko, V. (2015). Time-optimal control of fractional-order linear systems, Fractional Calculus and Applied Analysis 18(3): 687–696.10.1515/fca-2015-0042
  26. Matychyn, I. and Onyshchenko, V. (2018a). On time-optimal control of fractional-order systems, Journal of Computational and Applied Mathematics 339: 245–257.10.1016/j.cam.2017.10.016
  27. Matychyn, I. and Onyshchenko, V. (2018b). Optimal control of linear systems with fractional derivatives, Fractional Calculus and Applied Analysis 21(1): 134–150.10.1515/fca-2018-0009
  28. Matychyn, I. and Onyshchenko, V. (2019). Optimal control of linear systems of arbitrary fractional order, Fractional Calculus and Applied Analysis 22(1): 170–179.10.1515/fca-2019-0011
  29. Matychyn, I. and Onyshchenko, V. (2020). Solution of linear fractional order systems with variable coefficients, Fractional Calculus and Applied Analysis 23(3): 753–763.10.1515/fca-2020-0037
  30. Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego.
  31. Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
  32. Si, X., Yang, H. and Ivanov, I.G. (2021). Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems, International Journal of Applied Mathematics and Computer Science 31(1): 17–28, DOI: 10.34768/amcs-2021-0002.
  33. Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129–140.
  34. Skovranek, T., Macias, M., Sierociuk, D., Malesza, W., Dzielinski, A., Podlubny, I., Pocsova, J. and Petras, I. (2019). Anomalous diffusion modeling using ultracapacitors in domino ladder circuit, Microelectronics Journal 84: 136–141.10.1016/j.mejo.2019.01.005
  35. Zorich, V.A. and Paniagua, O. (2016). Mathematical Analysis II, Springer, Berlin/Heidelberg.10.1007/978-3-662-48993-2
DOI: https://doi.org/10.34768/amcs-2021-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 375 - 386
Submitted on: Nov 25, 2020
Accepted on: Apr 26, 2021
Published on: Sep 27, 2021
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Ivan Matychyn, Viktoriia Onyshchenko, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.