Have a personal or library account? Click to login

Data–driven online modelling for a UGI gasification process using modified lazy learning with a relevance vector machine

Open Access
|Jul 2021

References

  1. Aha, D.W. (1997). Lazy Learning, Kluwer Academic Publisher, Dordrecht.10.1007/978-94-017-2053-3
  2. Aha, D.W., Kibler, D. and Albert, M.K. (1991). Instance-based learning algorithms, Machine Learning 6(1): 37–66.10.1007/BF00153759
  3. Altafini, C.R., Wander, P.R. and Barreto, R.M. (2003). Prediction of the working parameters of a wood waste gasifier through an equilibrium model, Energy Conversion and Management 44(17): 2763–2777.10.1016/S0196-8904(03)00025-6
  4. Atkeson, C.G., Moore, A.W. and Schaal, S. (1997). Locally weighted learning, in D.A. Kidwell (Ed.), Lazy Learning, Springer, Dordrecht, pp. 11–73.10.1007/978-94-017-2053-3_2
  5. Babu, B. and Sheth, P.N. (2006). Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor, Energy Conversion and Management 47(15–16): 2602–2611.10.1016/j.enconman.2005.10.032
  6. Bontempi, G., Birattari, M. and Bersini, H. (1999). Lazy learning for local modelling and control design, International Journal of Control 72(7–8): 643–658.10.1080/002071799220830
  7. Chavan, P., Sharma, T., Mall, B., Rajurkar, B., Tambe, S., Sharma, B. and Kulkarni, B. (2012). Development of data-driven models for fluidized-bed coal gasification process, Fuel 93: 44–51.10.1016/j.fuel.2011.11.039
  8. Chen, S., Gunn, S.R. and Harris, C.J. (2001). The relevance vector machine technique for channel equalization application, IEEE Transactions on Neural Networks 12(6): 1529–1532.10.1109/72.96379218249985
  9. Cheng, C. and Chiu, M.-S. (2004a). A new data-based methodology for nonlinear process modeling, Chemical Engineering Science 59(13): 2801–2810.10.1016/j.ces.2004.04.020
  10. Cheng, C. and Chiu, M.-S. (2004b). A new data-based methodology for nonlinear process modeling, Chemical Engineering Science 59(13): 2801–2810.10.1016/j.ces.2004.04.020
  11. Corella, J. and Sanz, A. (2005). Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state, Fuel Processing Technology 86(9): 1021–1053.
  12. Demir, B. and Erturk, S. (2007). Hyperspectral image classification using relevance vector machines, IEEE Geoscience and Remote Sensing Letters 4(4): 586–590.10.1109/LGRS.2007.903069
  13. Fiaschi, D. and Michelini, M. (2001). A two-phase one-dimensional biomass gasification kinetics model, Biomass and Bioenergy 21(2): 121–132.10.1016/S0961-9534(01)00018-6
  14. Garcia, E.K., Feldman, S., Gupta, M.R. and Srivastava, S. (2010). Completely lazy learning, IEEE Transactions on Knowledge and Data Engineering 22(9): 1274–1285.10.1109/TKDE.2009.159
  15. Gordillo, E. and Belghit, A. (2011). A two phase model of high temperature steam-only gasification of biomass char in bubbling fluidized bed reactors using nuclear heat, International Journal of Hydrogen Energy 36(1): 374–381.10.1016/j.ijhydene.2010.09.088
  16. Han, P., Li, D.-Z. and Wang, Z. (2008). A study on the biomass gasification process model based on least squares SVM, Energy Conservation Technology 1(147): 3–7.
  17. Hou, Z.-S. and Wang, Z. (2013). From model-based control to data-driven control: Survey, classification and perspective, Information Sciences 235: 3–35.10.1016/j.ins.2012.07.014
  18. Hou, Z.-S. and Xu, J.-X. (2009). On data-driven control theory: The state of the art and perspective, Acta Automatica Sinica 35(6): 650–667.10.3724/SP.J.1004.2009.00650
  19. Huang, C.-E., Li, D. and Xue, Y. (2013). Active disturbance rejection control for the ALSTOM gasifier benchmark problem, Control Engineering Practice 21(4): 556–564.10.1016/j.conengprac.2012.11.014
  20. Kalita, P., Clifford, M., Jiamjiroch, K., Kalita, K., Mahanta, P. and Saha, U. (2013). Characterization and analysis of thermal response of rice husk for gasification applications, Journal of Renewable and Sustainable Energy 5(1): 013119.10.1063/1.4792487
  21. Liu, S., Sun, J., Ji, H. and Hou, Z. (2020). Model free adaptive control for the temperature adjustment of UGI coal gasification processes in synthetic ammonia industry, IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Guangxi, China, pp. 1–6.
  22. Mondal, P., Dang, G. and Garg, M. (2011). Syngas production through gasification and cleanup for downstream applications: Recent developments, Fuel Processing Technology 92(8): 1395–1410.10.1016/j.fuproc.2011.03.021
  23. Nelles, O. and Isermann, R. (1996). Basis function networks for interpolation of local linear models, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 470–475.
  24. Nougués, J., Pan, Y., Velo, E. and Puigjaner, L. (2000). Identification of a pilot scale fluidised-bed coal gasification unit by using neural networks, Applied Thermal Engineering 20(15–16): 1561–1575.10.1016/S1359-4311(00)00023-5
  25. Papole, G., Focke, W.W. and Manyala, N. (2012). Characterization of medium-temperature Sasol–Lurgi gasifier coal tar pitch, Fuel 98: 243–248.10.1016/j.fuel.2012.04.002
  26. Petersen, I. and Werther, J. (2005). Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed, Chemical Engineering and Processing: Process Intensification 44(7): 717–736.10.1016/j.cep.2004.09.001
  27. Puig-Arnavat, M., Hernández, J.A., Bruno, J.C. and Coronas, A. (2013). Artificial neural network models for biomass gasification in fluidized bed gasifiers, Biomass and Bioenergy 49: 279–289.10.1016/j.biombioe.2012.12.012
  28. Raman, P., Walawender, W.P., Fan, L. and Chang, C.-C. (1981). Mathematical model for the fluid-bed gasification of biomass materials: Application to feedlot manure, Industrial & Engineering Chemistry Process Design and Development 20(4): 686–692.10.1021/i200015a019
  29. Ren, Y.-Q., Xu, S.-S. and Gao, S.-W. (2004). Development status and tendency of coal gasification technology with dry coal feed in china, Electric Power 37(6): 49–52.
  30. Ruggiero, M. and Manfrida, G. (1999). An equilibrium model for biomass gasification processes, Renewable Energy 16(1–4): 1106–1109.10.1016/S0960-1481(98)00429-7
  31. Sadaka, S.S., Ghaly, A. and Sabbah, M. (2002). Two phase biomass, air-steam gasification model for fluidized bed reactors. Part I: Model development, Biomass and Bioenergy 22(6): 439–462.
  32. Shabbir, Z., Tay, D.H. and Ng, D.K. (2012). A hybrid optimisation model for the synthesis of sustainable gasification-based integrated biorefinery, Chemical Engineering Research and Design 90(10): 1568–1581.10.1016/j.cherd.2012.02.015
  33. Simani, S., Farsoni, S. and Castaldi, P. (2018). Data-driven techniques for the fault diagnosis of a wind turbine benchmark, International Journal of Applied Mathematics and Computer Science 28(2): 247–268, DOI: 10.2478/amcs-2018-0018.10.2478/amcs-2018-0018
  34. Simone, M., Barontini, F., Nicolella, C. and Tognotti, L. (2013). Assessment of syngas composition variability in a pilot-scale downdraft biomass gasifier by an extended equilibrium model, Bioresource Technology 140: 43–52.10.1016/j.biortech.2013.04.05223672938
  35. Srinivas, T., Gupta, A. and Reddy, B. (2009). Thermodynamic equilibrium model and exergy analysis of a biomass gasifier, Journal of Energy Resources Technology 131(3): 98–107.10.1115/1.3185354
  36. Sun, B., Liu, Y., Chen, X., Zhou, Q. and Su, M. (2011). Dynamic modeling and simulation of shell gasifier in IGCC, Fuel Processing Technology 92(8): 1418–1425.10.1016/j.fuproc.2011.02.017
  37. Taieb, S.B., Sorjamaa, A. and Bontempi, G. (2010). Multiple-output modeling for multi-step-ahead time series forecasting, Neurocomputing 73(10–12): 1950–1957.10.1016/j.neucom.2009.11.030
  38. Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research 1(Jun): 211–244.
  39. Tipping, M.E. and Faul, A.C. (2003). Fast marginal likelihood maximisation for sparse Bayesian models, Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, Key West, USA, pp. 1–14.
  40. Wei, L., Yang, Y., Nishikawa, R.M., Wernick, M.N. and Edwards, A. (2005). Relevance vector machine for automatic detection of clustered microcalcifications, IEEE Transactions on Medical Imaging 24(10): 1278–1285.10.1109/TMI.2005.85543516229415
  41. Wei, Q. and Liu, D. (2013). Adaptive dynamic programming for optimal tracking control of unknown nonlinear systems with application to coal gasification, IEEE Transactions on Automation Science and Engineering 11(4): 1020–1036.10.1109/TASE.2013.2284545
  42. Wei, Q. and Liu, D. (2014). Data-driven neuro-optimal temperature control of water–gas shift reaction using stable iterative adaptive dynamic programming, IEEE Transactions on Industrial Electronics 61(11): 6399–6408.10.1109/TIE.2014.2301770
  43. Yu, G.W., Wang, Y.M. and Xu, Y.Y. (2013). Modeling analysis of Shell, Texaco gasification technology’s effects on water gas shift for Fischer–Tropsch process, Advanced Materials Research 608–609: 1446–1453.10.4028/www.scientific.net/AMR.608-609.1446
  44. Zanoli, S., Astolfi, G. and Barboni, L. (2012). Application of a new dataset selection procedure for the prediction of the syngas composition of a gasification plant, IFAC Proceedings Volumes 45(15): 868–873.10.3182/20120710-4-SG-2026.00065
  45. Zhao, D., Liu, J., Wu, R., Cheng, D. and Tang, X. (2019). An active exploration method for data efficient reinforcement learning, International Journal of Applied Mathematics and Computer Science 29(2): 351–362, DOI: 10.2478/amcs-2019-0026.10.2478/amcs-2019-0026
DOI: https://doi.org/10.34768/amcs-2021-0022 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 321 - 335
Submitted on: Apr 24, 2020
Accepted on: Feb 9, 2021
Published on: Jul 8, 2021
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Shida Liu, Honghai Ji, Zhongsheng Hou, Jiashuo Zuo, Lingling Fan, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.