Have a personal or library account? Click to login

Dynamic location models of mobile sensors for travel time estimation on a freeway

Open Access
|Jul 2021

References

  1. Ban, X., Chu, L., Herring, R. and Margulici, J. (2011). Sequential modeling framework for optimal sensor placement for multiple intelligent transportation system applications, Journal of Transportation Engineering 137(2): 112–120.10.1061/(ASCE)TE.1943-5436.0000196
  2. Ban, X., Herring, R., Margulici, J. and Bayen, A. (2009). Optimal sensor placement for travel time estimation, Transportation and Traffic Theory 2009: 697–721.10.1007/978-1-4419-0820-9_34
  3. Bartin, B., Ozbay, K. and Iyigun, C. (2007). A clustering based methodology for determining optimal roadway configuration of detectors for travel time estimation, Transportation Research Record 2000: 98–105.10.3141/2000-12
  4. Beryini, R. and Lovell, D. (2009). Impacts of sensor spacing on accurate freeway travel time estimation for traveler information, Journal of Intelligent Transportation Systems 13(2): 97–110.10.1080/15472450902858400
  5. Chakraborty, P., Hegde, C. and Sharma, A. (2019). Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds, Transportation Research C 105: 81–99.10.1016/j.trc.2019.05.034
  6. Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213–225, DOI: 10.2478/amcs-2019-0016.10.2478/amcs-2019-0016
  7. Chaudhuri, P.,Martin, P.T., Stevanovic, A.Z. and Zhu, C. (2010). The effects of detector spacing on travel time prediction on freeways, World Academy of Science, Engineering and Technology 42(6): 1–10.
  8. Chou, J.-J., Shih, C.-S., Wang, W.-D. and Huang, K.-C. (2019). IoT sensing networks for gait velocity measurement, International Journal of Applied Mathematics and Computer Science 29(2): 245–259, DOI: 10.2478/amcs-2019-0018.10.2478/amcs-2019-0018
  9. Chow, J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy, International Journal of Transportation Science and Technology 5(3): 167–185.10.1016/j.ijtst.2016.11.002
  10. Danczyk, A., Di, X. and Liu, H. (2016). A probabilistic optimization model for allocating freeway sensors, Transportation Research C 67: 378–398.10.1016/j.trc.2016.02.015
  11. Danczyk, A. and Liu, H. (2011). A mixed-integer linear program for optimizing sensor locations along freeway corridors, Transportation Research Part B 45(1): 208–217.10.1016/j.trb.2010.04.002
  12. Fischetti, M. and Monaci, M. (2020). A branch-and-cut algorithm for mixed-integer bilinear programming, European Journal of Operational Research 282(2): 506–514.10.1016/j.ejor.2019.09.043
  13. Fu, C., Zhu, N. and Ma, S. (2017). A stochastic program approach for path reconstruction oriented sensor location model, Transportation Research Part B 102: 210–237.10.1016/j.trb.2017.05.013
  14. Fujito, I., Margiotta, R., Huang, W. and Perez, W.A. (2006). Effect of sensor spacing on performance measure calculations, Journal of the Transportation Research Board 1945: 1–11.10.1177/0361198106194500102
  15. Geetla, T., Batta, R., Blatt, A., Flanigan, M. and Majka, K. (2014). Optimal placement of omnidirectional sensors in a transportation network for effective emergency response and crash characterization, Transportation Research C 45: 64–82.10.1016/j.trc.2014.02.024
  16. Gentili, M. and Mirchandani, P. (2012). Locating sensors on traffic networks: Models, challenges and research opportunities, Transportation Research C 24: 227–255.10.1016/j.trc.2012.01.004
  17. Gentili, M. and Mirchandani, P. (2018). Review of optimal sensor location models for travel time estimation, Transportation Research C 90: 74–96.10.1016/j.trc.2018.01.021
  18. He, S. (2013). A graphical approach to identify sensor locations for link flow inference, Transportation Research B 51: 65–76.10.1016/j.trb.2013.02.006
  19. Hong, Z. and Fukuda, D. (2012). Effects of traffic sensor location on traffic state estimation, Procedia-Social and Behavioral Sciences 54(2290): 1186–1196.10.1016/j.sbspro.2012.09.833
  20. Karatsoli, M., Margreiter, M. and Spangler, M. (2017). Bluetooth-based travel times for automatic incident detection-a systematic description of the characteristics for traffic management purposes, Transportation Research Procedia 24: 204–211.10.1016/j.trpro.2017.05.109
  21. Kianfar, J. and Edara, P. (2010). Optimizing freeway traffic sensor locations by clustering global-positioning-system-derived speed patterns, IEEE Transactions on Intelligent Transportation Systems 11(3): 738–747.10.1109/TITS.2010.2051329
  22. Kim, J., Park, B., Lee, J. and Won, J. (2011). Determining optimal sensor locations in freeway using genetic algorithm-based optimization, Engineering Applications of Artificial Intelligence 24(2): 318–324.10.1016/j.engappai.2010.10.020
  23. Kolak, O., Feyzioğlu, O. and Noyan, N. (2018). Bi-level multi-objective traffic network optimisation with sustainability perspective, Expert Systems with Applications 104(15): 294–306.10.1016/j.eswa.2018.03.034
  24. Kolosz, B., Grant-Muller, S. and Djemame, K. (2013). Modelling uncertainty in the sustainability of intelligent transport systems for highways using probabilistic data fusion, Environmental Modelling & Software 49: 78–97.10.1016/j.envsoft.2013.07.011
  25. Li, X. and Ouyang, Y. (2011). Reliable sensor deployment for network traffic surveillance, Transportation Research B 45: 218–231.10.1016/j.trb.2010.04.005
  26. Liu, F. L., Wang, Y., Bai, Y. and Yu, J. (2019). Study on stealth characteristics of metamaterials based on simulated annealing algorithm, Procedia Computer Science 147: 221–227.10.1016/j.procs.2019.01.230
  27. Liu, H. and Danczyk, A. (2009). Optimal sensor locations for freeway bottleneck identification, Computer-Aided Civil and Infrastructure Engineering 24(8): 535–550.10.1111/j.1467-8667.2009.00614.x
  28. Ma,W. and Qian, Z. (2018). Statistical inference of probabilistic origin-destination demand using day-to-day traffic data, Transportation Research C 88: 227–256.10.1016/j.trc.2017.12.015
  29. Meng, T., Jing, X., Yan, Z. and Pedrycz, W. (2020). A survey on machine learning for data fusion, Information Fusion 57: 115–229.10.1016/j.inffus.2019.12.001
  30. Nemati, M., Braun, M. and Tenbohlen, S. (2018). Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming, Applied Energy 210: 944–963.10.1016/j.apenergy.2017.07.007
  31. Ng, M. (2013). Partial link flow observability in the presence of initial sensors: Solution without path enumeration, Transportation Research E 51: 62–66.10.1016/j.tre.2012.12.002
  32. Olia, A., Abdelgawad, H., Abdulhai, B. and Razavi, S. (2017). Optimizing the number and locations of freeway roadside equipment units for travel time estimation in a connected vehicle environment, Journal of Intelligent Transportation Systems 21(4): 296–309.10.1080/15472450.2017.1332524
  33. Park, H. and Haghani, A. (2015). Optimal number and location of bluetooth sensors considering stochastic travel time prediction, Transportation Research C 55: 203–216.10.1016/j.trc.2015.03.023
  34. Salari, M., Kattan, L., Lam, W., Lo, H. and Esfeh, M. (2019). Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure, Transportation Research Part B 121: 216–251.10.1016/j.trb.2019.01.004
  35. Song, Z.R., Zang, L.L. and Zhu, W.X. (2020). Study on minimum emission control strategy on arterial road based on improved simulated annealing genetic algorithm, Physica A 537: 1–11.10.1016/j.physa.2019.122691
  36. Xing, T., Zhou, X. and Taylor, J. (2013). Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach, Transportation Research B 57: 66–90.10.1016/j.trb.2013.09.007
  37. Yang, Y. and Fan, Y. (2015). Data dependent input control for origin-destination demand estimation using observability analysis, Transportation Research B 78: 385–403.10.1016/j.trb.2015.04.010
  38. Zhan, F., Wan, X., Zhang, J., Li, R. and Ran, B. (2015). Sample size reduction method based on data fusion for freeways with fixed detectors, Transportation Research Record 2528: 18–26.10.3141/2528-03
  39. Zhu, N., Fu, C. and Ma, S. (2018). Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model, Transportation Research B 113: 91–120.10.1016/j.trb.2018.05.009
  40. Zhu, N., Liu, Y., Ma, S. and He, Z. (2014). Mobile traffic sensor routing in dynamic transportation systems, IEEE Transactions on Intelligent Transportation Systems 15(5): 2273–2285.10.1109/TITS.2014.2314732
  41. Zhu, N., Ma, S. and Zheng, L. (2017). Travel time estimation oriented freeway sensor placement problem considering sensor failure, Journal of Intelligent Transportation Systems 21(1): 26–40.10.1080/15472450.2016.1194206
DOI: https://doi.org/10.34768/amcs-2021-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 271 - 287
Submitted on: Dec 1, 2020
Accepted on: Apr 10, 2021
Published on: Jul 8, 2021
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Weiwei Sun, Liang Shen, Hu Shao, Pengjie Liu, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.