Ban, X., Chu, L., Herring, R. and Margulici, J. (2011). Sequential modeling framework for optimal sensor placement for multiple intelligent transportation system applications, Journal of Transportation Engineering137(2): 112–120.10.1061/(ASCE)TE.1943-5436.0000196
Ban, X., Herring, R., Margulici, J. and Bayen, A. (2009). Optimal sensor placement for travel time estimation, Transportation and Traffic Theory2009: 697–721.10.1007/978-1-4419-0820-9_34
Bartin, B., Ozbay, K. and Iyigun, C. (2007). A clustering based methodology for determining optimal roadway configuration of detectors for travel time estimation, Transportation Research Record2000: 98–105.10.3141/2000-12
Beryini, R. and Lovell, D. (2009). Impacts of sensor spacing on accurate freeway travel time estimation for traveler information, Journal of Intelligent Transportation Systems13(2): 97–110.10.1080/15472450902858400
Chakraborty, P., Hegde, C. and Sharma, A. (2019). Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds, Transportation Research C105: 81–99.10.1016/j.trc.2019.05.034
Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science29(2): 213–225, DOI: 10.2478/amcs-2019-0016.10.2478/amcs-2019-0016
Chaudhuri, P.,Martin, P.T., Stevanovic, A.Z. and Zhu, C. (2010). The effects of detector spacing on travel time prediction on freeways, World Academy of Science, Engineering and Technology42(6): 1–10.
Chow, J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy, International Journal of Transportation Science and Technology5(3): 167–185.10.1016/j.ijtst.2016.11.002
Danczyk, A., Di, X. and Liu, H. (2016). A probabilistic optimization model for allocating freeway sensors, Transportation Research C67: 378–398.10.1016/j.trc.2016.02.015
Danczyk, A. and Liu, H. (2011). A mixed-integer linear program for optimizing sensor locations along freeway corridors, Transportation Research Part B45(1): 208–217.10.1016/j.trb.2010.04.002
Fischetti, M. and Monaci, M. (2020). A branch-and-cut algorithm for mixed-integer bilinear programming, European Journal of Operational Research282(2): 506–514.10.1016/j.ejor.2019.09.043
Fu, C., Zhu, N. and Ma, S. (2017). A stochastic program approach for path reconstruction oriented sensor location model, Transportation Research Part B102: 210–237.10.1016/j.trb.2017.05.013
Fujito, I., Margiotta, R., Huang, W. and Perez, W.A. (2006). Effect of sensor spacing on performance measure calculations, Journal of the Transportation Research Board1945: 1–11.10.1177/0361198106194500102
Geetla, T., Batta, R., Blatt, A., Flanigan, M. and Majka, K. (2014). Optimal placement of omnidirectional sensors in a transportation network for effective emergency response and crash characterization, Transportation Research C45: 64–82.10.1016/j.trc.2014.02.024
Gentili, M. and Mirchandani, P. (2012). Locating sensors on traffic networks: Models, challenges and research opportunities, Transportation Research C24: 227–255.10.1016/j.trc.2012.01.004
Gentili, M. and Mirchandani, P. (2018). Review of optimal sensor location models for travel time estimation, Transportation Research C90: 74–96.10.1016/j.trc.2018.01.021
Hong, Z. and Fukuda, D. (2012). Effects of traffic sensor location on traffic state estimation, Procedia-Social and Behavioral Sciences54(2290): 1186–1196.10.1016/j.sbspro.2012.09.833
Karatsoli, M., Margreiter, M. and Spangler, M. (2017). Bluetooth-based travel times for automatic incident detection-a systematic description of the characteristics for traffic management purposes, Transportation Research Procedia24: 204–211.10.1016/j.trpro.2017.05.109
Kianfar, J. and Edara, P. (2010). Optimizing freeway traffic sensor locations by clustering global-positioning-system-derived speed patterns, IEEE Transactions on Intelligent Transportation Systems11(3): 738–747.10.1109/TITS.2010.2051329
Kim, J., Park, B., Lee, J. and Won, J. (2011). Determining optimal sensor locations in freeway using genetic algorithm-based optimization, Engineering Applications of Artificial Intelligence24(2): 318–324.10.1016/j.engappai.2010.10.020
Kolak, O., Feyzioğlu, O. and Noyan, N. (2018). Bi-level multi-objective traffic network optimisation with sustainability perspective, Expert Systems with Applications104(15): 294–306.10.1016/j.eswa.2018.03.034
Kolosz, B., Grant-Muller, S. and Djemame, K. (2013). Modelling uncertainty in the sustainability of intelligent transport systems for highways using probabilistic data fusion, Environmental Modelling & Software49: 78–97.10.1016/j.envsoft.2013.07.011
Li, X. and Ouyang, Y. (2011). Reliable sensor deployment for network traffic surveillance, Transportation Research B45: 218–231.10.1016/j.trb.2010.04.005
Liu, F. L., Wang, Y., Bai, Y. and Yu, J. (2019). Study on stealth characteristics of metamaterials based on simulated annealing algorithm, Procedia Computer Science147: 221–227.10.1016/j.procs.2019.01.230
Liu, H. and Danczyk, A. (2009). Optimal sensor locations for freeway bottleneck identification, Computer-Aided Civil and Infrastructure Engineering24(8): 535–550.10.1111/j.1467-8667.2009.00614.x
Ma,W. and Qian, Z. (2018). Statistical inference of probabilistic origin-destination demand using day-to-day traffic data, Transportation Research C88: 227–256.10.1016/j.trc.2017.12.015
Meng, T., Jing, X., Yan, Z. and Pedrycz, W. (2020). A survey on machine learning for data fusion, Information Fusion57: 115–229.10.1016/j.inffus.2019.12.001
Nemati, M., Braun, M. and Tenbohlen, S. (2018). Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming, Applied Energy210: 944–963.10.1016/j.apenergy.2017.07.007
Ng, M. (2013). Partial link flow observability in the presence of initial sensors: Solution without path enumeration, Transportation Research E51: 62–66.10.1016/j.tre.2012.12.002
Olia, A., Abdelgawad, H., Abdulhai, B. and Razavi, S. (2017). Optimizing the number and locations of freeway roadside equipment units for travel time estimation in a connected vehicle environment, Journal of Intelligent Transportation Systems21(4): 296–309.10.1080/15472450.2017.1332524
Park, H. and Haghani, A. (2015). Optimal number and location of bluetooth sensors considering stochastic travel time prediction, Transportation Research C55: 203–216.10.1016/j.trc.2015.03.023
Salari, M., Kattan, L., Lam, W., Lo, H. and Esfeh, M. (2019). Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure, Transportation Research Part B121: 216–251.10.1016/j.trb.2019.01.004
Song, Z.R., Zang, L.L. and Zhu, W.X. (2020). Study on minimum emission control strategy on arterial road based on improved simulated annealing genetic algorithm, Physica A537: 1–11.10.1016/j.physa.2019.122691
Xing, T., Zhou, X. and Taylor, J. (2013). Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach, Transportation Research B57: 66–90.10.1016/j.trb.2013.09.007
Yang, Y. and Fan, Y. (2015). Data dependent input control for origin-destination demand estimation using observability analysis, Transportation Research B78: 385–403.10.1016/j.trb.2015.04.010
Zhan, F., Wan, X., Zhang, J., Li, R. and Ran, B. (2015). Sample size reduction method based on data fusion for freeways with fixed detectors, Transportation Research Record2528: 18–26.10.3141/2528-03
Zhu, N., Fu, C. and Ma, S. (2018). Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model, Transportation Research B113: 91–120.10.1016/j.trb.2018.05.009
Zhu, N., Liu, Y., Ma, S. and He, Z. (2014). Mobile traffic sensor routing in dynamic transportation systems, IEEE Transactions on Intelligent Transportation Systems15(5): 2273–2285.10.1109/TITS.2014.2314732
Zhu, N., Ma, S. and Zheng, L. (2017). Travel time estimation oriented freeway sensor placement problem considering sensor failure, Journal of Intelligent Transportation Systems21(1): 26–40.10.1080/15472450.2016.1194206