Alabau-Boussouira, F. (2007). Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differential Equations and Applications14(5): 643–669.10.1007/s00030-007-5033-0
Alikhanov, A. (2012). Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Applied Mathematics and Computation219(8): 3938–3946.10.1016/j.amc.2012.10.029
Almeida Júnior, D., Santos, M.L. and Muñoz Rivera, J. (2013). Stability to weakly dissipative Timoshenko systems, Mathematical Methods in the Applied Sciences36(14): 1965–1976.10.1002/mma.2741
Ammar-Khodja, F., Kerbal, S. and Soufyane, A. (2007). Stabilization of the nonuniform Timoshenko beam, Journal of Mathematical Analysis and Applications327(1): 525–538.10.1016/j.jmaa.2006.04.016
Anderson, J., Moradi, S. and Rafiq, T. (2018). Non-linear Langevin and fractional Fokker–Planck equations for anomalous diffusion by Lévy stable processes, Entropy20(10): 1–12.10.3390/e20100760751232233265849
Atanackovic, T., Pilipovic, S. and Zorica, D. (2007). A diffusion wave equation with two fractional derivatives of different order, Journal of Physics A: Mathematical and Theoretical40(20): 5319.10.1088/1751-8113/40/20/006
Beghin, L. and Orsingher, E. (2003). The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation, Fractional Calculus and Applied Analysis6(2): 187–204.
Cavalcanti, M., Cavalcanti, V., Nascimento, F., Lasiecka, I. and Rodrigues, J. (2014). Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Zeitschrift für angewandte Mathematik und Physik65(6): 1189–1206.10.1007/s00033-013-0380-7
Chen, J., Liu, F. and Anh, V. (2008). Analytical solution for the time-fractional telegraph equation by the method of separating variables, Journal of Mathematical Analysis and Applications338(2): 1364–1377.10.1016/j.jmaa.2007.06.023
Duarte-Mermoud, M., Aguila-Camacho, N., Gallegos, J. and Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science and Numerical Simulation22(1–3): 650–659.10.1016/j.cnsns.2014.10.008
Gallegos, J., Duarte-Mermoud, M., Aguila-Camacho, N. and Castro-Linares, R. (2015). On fractional extensions of Barbalat lemma, Systems & Control Letters84(1): 7–12.10.1016/j.sysconle.2015.07.004
Gorenflo, R., Kilbas, A., Mainardi, F. and Rogosin, S. (2014). Mittag-Leffler Functions, Related Topics and Applications, Vol. 2, Springer, Heidelberg.10.1007/978-3-662-43930-2
Kaczorek, T. (2020). Global stability of nonlinear feedback systems with fractional positive linear parts, International Journal of Applied Mathematics and Computer Science30(3): 493–499, DOI: 10.34768/amcs-2020-0036.
Klamka, J., Babiarz, A., Czornik, A. and Niezabitowski, M. (2020). Controllability and stability of semilinear fractional order systems, in P. Kulczycki et al. (Eds), Automatic Controls, Robotics, and Information Processing, Studies in Systems, Decision and Control, Vol. 296, Springer, Cham, pp. 267–290.
Li, Y., Chen, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications59(5): 1810–1821.10.1016/j.camwa.2009.08.019
Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London.10.1142/p614
Momani, S. (2005). Analytic and approximate solutions of the space-and time-fractional telegraph equations, Applied Mathematics and Computation170(2): 1126–1134.10.1016/j.amc.2005.01.009
Mustafa, M. and Messaoudi, S. (2010). General energy decay rates for a weakly damped Timoshenko system, Journal of Dynamical and Control Systems16(2): 211–226.10.1007/s10883-010-9090-z
Orsingher, E. and Beghin, L. (2004). Time-fractional telegraph equations and telegraph processes with Brownian time, Probability Theory and Related Fields128(1): 141–160.10.1007/s00440-003-0309-8
Raposo, C., Ferreira, J., Santos, M. and Castro, N. (2005). Exponential stability for the Timoshenko system with two weak dampings, Applied Mathematics Letters18(5): 535–541.10.1016/j.aml.2004.03.017
Rivera, J. and Racke, R. (2008). Timoshenko systems with indefinite damping, Journal of Mathematical Analysis and Applications341(2): 1068–1083.10.1016/j.jmaa.2007.11.012
Rivera, M., Racke, J. and Null, R. (2002). Global stability for damped Timoshenko systems, Discrete & Continuous Dynamical Systems9(6): 1625–1639.10.3934/dcds.2003.9.1625
Sandev, T. and Tomovski,. (2019). Fractional Equations and Models: Theory and Applications, Developments in Mathematics, Springer Nature Switzerland AG, Cham.10.1007/978-3-030-29614-8
Sklyar, G.M. and Szkibiel, G. (2013). Controlling a non-homogeneous Timoshenko beam with the aid of the torque, International Journal of Applied Mathematics and Computer Science23(3): 587–598, DOI: 10.2478/amcs-2013-0044.10.2478/amcs-2013-0044
Soufyane, A. and Whebe, A. (2003). Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electronic Journal of Differential Equations2003(29): 1–14.