Adler, M., Bombieri, M. and Engel, K.-J. (2017). Perturbation of analytic semigroups and applications to partial differential equations, Journal of Evolution Equations17(4): 1183–1208.10.1007/s00028-016-0377-8
Arendt, W., Batty, C., Hieber, M. and Neubrander, F. (2011). Vector-Valued Laplace Transforms and Cauchy Problems, Springer-Basel AG, Basel.10.1007/978-3-0348-0087-7
Ball, J. (1977). Strongly continuous semigroups, weak solutions and the variation of constants formula, Proceedings of the American Mathematical Society63(2): 370–373.10.1090/S0002-9939-1977-0442748-6
Crouzeix, M. (2008). A functional calculus based on the numerical range: Applications, Linear and Multilinear Algebra56(1–2): 81–103.10.1080/03081080701336610
Deckard, D., Foias, C., and Pearcy, C. (1979). Compact operators with root vectors that span, Proceedings of the American Mathematical Society76(1): 101–106.10.1090/S0002-9939-1979-0534397-8
Furuta, T. (1977). Relations between generalized growth conditions and several classes of convexoid operators, Canadian Journal of Mathematics29(1–2): 1010–1030.10.4153/CJM-1977-099-0
Grabowski, P. (1990). On spectral-Lyapunov approach to parametric optimization of distributed parameter systems, IMA Journal of Mathematical Control and Information7(4): 317–338.10.1093/imamci/7.4.317
Grabowski, P. (2017). Some modifications of the Weiss–Staffans perturbation theorem, International Journal of Robust and Nonlinear Control27(7): 1094–1121.10.1002/rnc.3617
Grabowski, P. and Callier, F. (1999). Admissible observation operators. duality of observation and control using factorizations, Dynamics of Continuous, Discrete and Impulsive Systems6(1): 87–119.
Ionkin, N. (1977). Solutions of a boundary-value problem in heat conduction with a nonclassical boundary condition, Differentsial’nye Uravnieniya13(2): 294–304.
Katsnel’son, V. (1967). Conditions for a system of root vectors of certain classes of operators to be a basis, Fuktsjonal’nyj analiz i evo prilozhenija1(2): 39–51.
Kesel’man, G. (1964). On the unconditional convergence of eigenfunction expansions of some differential operators, Izvestya Vyshych Uchebnych Zavedenii: Matematika39(2): 82–93, (in Russian).
Lang, P. and Locker, J. (1989). Spectral theory of two-point differential operators determined by −D2. I: Spectral properities, Journal of Mathematical Analysis and Applications141(2): 538–558.
Lang, P. and Locker, J. (1990). Spectral theory of two-point differential operators determined by −D2. II: Analysis of cases, Journal of Mathematical Analysis and Applications146(1): 148–191.
Röh, H. (1982a). Dissipative operator with finite dimensional damping, Proceedings of the Royal Society of Edinburgh91A(3–4): 243–263.10.1017/S0308210500017480
Shkalikov, A. (1982). Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moskovskogo Universiteta: Matematika i Mekhanika6: 12–21, (in Russian).
Shkalikov, A. (1986). Boundary problem for ordinary differential operators with parameter in the boundary conditions, Journal of Soviet Mathematics33(6): 1311–1342.10.1007/BF01084754