Andriluka, M., Pishchulin, L., Gehler, P.V. and Schiele, B. (2014). 2D human pose estimation: New benchmark and state of the art analysis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, pp. 3686–3693.
Artacho, B. and Savakis, A. (2020). Unipose: Unified human pose estimation in single images and videos, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR Virtual), pp. 7035–7044, (online).
Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L. and Wang, X. (2017). Multi-context attention for human pose estimation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 5669–5678.
Fan, X., Zheng, K., Lin, Y. and Wang, S. (2015). Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 1347–1355.
Li, C., Yung, N.H.C., Sun, X. and Lam, E.Y. (2017). Human arm pose modeling with learned features using joint convolutional neural network, Machine Vision and Applications 28(1–2): 1–14.10.1007/s00138-016-0796-0
Lifshitz, I., Fetaya, E. and Ullman, S. (2016). Human pose estimation using deep consensus voting, European Conference on Computer Vision (ECCV), Amsterdam, Holland, pp. 246–260.
Long, J., Shelhamer, E. and Darrell, T. (2015). convolutional networks for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 3431–3440.
Newell, A., Yang, K. and Deng, J. (2016). Stacked hourglass networks for human pose estimation, European Conference on Computer Vision (ECCV), Amsterdam, Holland, pp. 483–499.
Ning, F., Shi, Y., Cai, M. and Xu, W. (2020). Various realization methods of machine-part classification based on deep learning, Journal of Intelligent Manufacturing 31(8): 2019–2032.10.1007/s10845-020-01550-9
Pfister, T., Charles, J. and Zisserman, A. (2015). Flowing ConvNets for human pose estimation in videos, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1913–1921.
Sun, K., Xiao, B., Liu, D. and Wang, J. (2019). Deep high-resolution representation learning for human pose estimation, Computer Vision and Pattern Recognition (CVPR), Los Angeles, USA, pp. 5693–5703.
Sun, X., Xiao, B., Wei, F., Liang, S. and Wei, Y. (2018). Integral human pose regression, European Conference on Computer Vision (ECCV), Munich, Germany, pp. 529–545.
Tompson, J., Goroshin, R., Jain, A., LeCun, Y. and Bregler, C. (2015). Efficient object localization using convolutional networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 648–656.
Toshev, A. and Szegedy, C. (2015). DeepPose: Human pose estimation via deep neural networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, pp. 1653–1660.
Wei, S.-E., Ramakrishna, V., Kanade, T. and Sheikh, Y. (2016). Convolutional pose machines, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 4724–4732.
Xiao, B., Wu, H. and Wei, Y. (2018). Simple baselines for human pose estimation and tracking, European Conference on Computer Vision (ECCV), Munich, Germany, pp. 466–481.
Yang, W., Li, S., Ouyang, W., Li, H. and Wang, X. (2017). Learning feature pyramids for human pose estimation, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1281–1290.
Yang, W., Ouyang, W., Li, H. and Wang, X. (2016). End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 3073–3082.
Zhou, J., Liu, J. and Zhang, M. (2020). Curve skeleton extraction via k-nearest-neighbors based contraction, International Journal of Applied Mathematics and Computer Science 30(1): 123–132, DOI: 10.34768/amcs-2020-0010.
Zlatanski, M., Sommer, P., Zurfluh, F., Zadeh, S.G., Faraone, A. and Perera, N. (2019). Machine perception platform for safe human-robot collaboration, 2019 IEEE SENSORS, Montreal, Canada, pp. 1–4.