Have a personal or library account? Click to login
Mining clinical pathways for daily insulin therapy of diabetic children Cover

Mining clinical pathways for daily insulin therapy of diabetic children

Open Access
|Apr 2021

References

  1. ADA (2020). Children and adolescents: Standards of medical care in diabetes—2020, Diabetes Care 43(Suppl 1): S163–S182.10.2337/dc20-S01331862756
  2. Aspland, E., Gartner, D. and Harper, P. (2019). Clinical pathway modelling: A literature review, Health Systems 0(0): 1–23.10.1080/20476965.2019.1652547794601933758656
  3. Augusto, V., Xie, X., Prodel, M., Jouaneton, B. and Lamarsalle, L. (2016). Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation, Proceedings of the 2016 Winter Simulation Conference, Arlington, USA, pp. 2135–2146.
  4. Barber, D. (2012). Bayesian Reasoning and Machine Learning, Cambridge University Press, Cambridge.10.1017/CBO9780511804779
  5. Bennett, C.C. and Hauser, K.K. (2013). Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach, CoRR abs/1301.2158.
  6. Bourgani, E., Stylios, C., Georgopoulos, V. and Manis, G. (2013). A study on fuzzy cognitive map structures for medical decision support systems, in M. Nikravesh et al. (Eds), Forging New Frontiers: Fuzzy Pioneers II, Springer, Berlin/Heidelberg, pp. 151–174.10.2991/eusflat.2013.111
  7. Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis, Communications in Statistics—Theory and Methods 3(1): 1–27.10.1080/03610927408827101
  8. Davidson, M. (2015). Insulin therapy: A personal approach, Clinical Diabetes: A publication of the American Diabetes Association 33(3): 123–135.10.2337/diaclin.33.3.123450394126203205
  9. De Gaetano, A., Hardy, T., Beck, B., Raddad, E., Palumbo, P., Bue-Valleskey, J. and Pørksen, N. (2008). Mathematical models of diabetes progression, American Journal of Physiology:. Endocrinology and Metabolism 295(6): E1462–79.
  10. Deja, R., Froelich, W. and Deja, G. (2015). Differential sequential patterns supporting insulin therapy of new-onset type 1 diabetes, Biomedical Engineering Online 14(1): 13.10.1186/s12938-015-0004-x434967925888901
  11. Deja, R., Froelich, W., Deja, G. and Wakulicz-Deja, A. (2017). Hybrid approach to the generation of medical guidelines for insulin therapy for children, Information Sciences 384(C): 157–173.10.1016/j.ins.2016.07.066
  12. Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics 3(3): 32–57.10.1080/01969727308546046
  13. Elghazel, H., Deslandres, V., Kallel, K. and Dussauchoy, A. (2007). Clinical pathway analysis using graph-based approach and Markov models, ICDIM 2007 Proceedings, Lyon, France, pp. 279–284.
  14. Froelich, W., Deja, R. and Deja, G. (2013). Mining therapeutic patterns from clinical data for juvenile diabetes, Fundamenta Informaticae 127(1): 513–528.10.3233/FI-2013-924
  15. Funkner, A.A., Yakovlev, A.N. and Kovalchuk, S.V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records, Procedia Computer Science 119: 234–244.10.1016/j.procs.2017.11.181
  16. García, S., Luengo, J. and Herrera, F. (2015). Data Preprocessing in Data Mining, Intelligent Systems Reference Library, Vol. 72, Springer, Cham.
  17. Haq, A., Wilk, S. and Abelló, A. (2019). Fusion of clinical data: A case study to predict the type of treatment of bone fractures, International Journal of Applied Mathematics and Computer Science 29(1): 51–67, DOI: 10.2478/amcs-2019-0004.10.2478/amcs-2019-0004
  18. Hripcsak, G., Albers, D. and Perotte, A. (2015). Parameterizing time in electronic health record studies, Journal of the American Medical Informatics Association 22(4): 794–804.10.1093/jamia/ocu051616947125725004
  19. Huang, Z., Lu, X. and Duan, H. (2012). On mining clinical pathway patterns from medical behaviors, Artificial Intelligence in Medicine 56(1): 35–50.10.1016/j.artmed.2012.06.00222809825
  20. Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Di Camillo, B., Malovini, A., Manfrini, M., Cobelli, C. and Bellazzi, R. (2015). A dynamic Bayesian network model for long-term simulation of clinical complications in type 1 diabetes, Journal of Biomedical Informatics 57: 369–376.10.1016/j.jbi.2015.08.02126325295
  21. Mattila, R., Siika, A., Roy, J. and Wahlberg, B. (2016). A Markov decision process model to guide treatment of abdominal aortic aneurysms, 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina, pp. 436–441.
  22. Ozcan, Y.A., Tánfani, E. and Testi, A. (2011). A simulation-based modeling framework to deal with clinical pathways, Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, USA, pp. 1190–1201.
  23. Palumbo, P., Ditlevsen, S., Bertuzzi, A. and Gaetano, A.D. (2013). Mathematical modeling of the glucose–insulin system: A review, Mathematical Biosciences 244(2): 69–81.10.1016/j.mbs.2013.05.00623733079
  24. Papiez, A., Badie, C. and Polanska, J. (2019). Machine learning techniques combined with dose profiles indicate radiation response biomarkers, International Journal of Applied Mathematics and Computer Science 29(1): 169–178, DOI: 10.2478/amcs-2019-0013.10.2478/amcs-2019-0013
  25. Schaefer, A., Bailey, M., Shechter, S. and Roberts, M. (2005). Modeling medical treatment using Markov decision processes, in M.L. Brandeau et al. (Eds), Operations Research and Health Care, Springer, Boston, pp. 593–612.10.1007/1-4020-8066-2_23
  26. Schwarz, K., Römer, M. and Mellouli, T. (2019). A data-driven hierarchical MILP approach for scheduling clinical pathways: A real-world case study from a German university hospital, Business Research 12: 597–636.10.1007/s40685-019-00102-z
  27. Szwed, P. (2013). Application of fuzzy ontological reasoning in an implementation of medical guidelines, 6th International Conference on Human System Interactions, HSI 2013, Gdańsk, Poland, pp. 1–10.
  28. Weijters, A., Aalst, W. and Medeiros, A. (2006). Process Mining with the Heuristics Miner-Algorithm, Eindhoven University of Technology, Eindhoven.
  29. Xie, X.L. and Beni, G. (1991). A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8): 841–847.10.1109/34.85677
  30. Yadav, P., Steinbach, M., Kumar, V. and Simon, G. (2017). Mining electronic health records: A survey, arXiv: 1702.03222.
  31. Yang, X., Han, R., Guo, Y., Bradley, J., Cox, B., Dickinson, R. and Kitney, R. (2012). Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA, BMC Bioinformatics 13 (Suppl 14): S4.10.1186/1471-2105-13-S14-S4343972323095226
  32. Zhang, Y. and Padman, R. (2016). Data-driven clinical and cost pathways for chronic care delivery, The American Journal of Managed Care 22(12): 816–820.
  33. Zhang, Y., Padman, R. and Patel, N. (2015). Paving the cowpath: Learning and visualizing clinical pathways from electronic health record data, Journal of Biomedical Informatics 58: 186–197.10.1016/j.jbi.2015.09.00926419864
DOI: https://doi.org/10.34768/amcs-2021-0008 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 107 - 121
Submitted on: Mar 18, 2020
Accepted on: Oct 17, 2020
Published on: Apr 3, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Rafal Deja, Wojciech Froelich, Grazyna Deja, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.