Have a personal or library account? Click to login
Breast cancer nuclei segmentation and classification based on a deep learning approach Cover

Breast cancer nuclei segmentation and classification based on a deep learning approach

Open Access
|Apr 2021

References

  1. Alsubaie, N., Trahearn, N., Raza, S., Snead, D. and Rajpoot, N. (2017). Stain deconvolution using statistical analysis of multi-resolution stain colour representation, PLOS ONE 12(1): e0169875.10.1371/journal.pone.0169875522679928076381
  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 68(6): 394–424.10.3322/caac.2149230207593
  3. Cui, Y., Zhang, G., Liu, Z., Xiong, Z. and Hu, J. (2018). A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images, arXiv: 1803.02786.
  4. Dudzińska, D. and Piórkowski, A. (2020). Tissue differentiation based on classification of morphometric features of nuclei, in H. Florez and S. Misra (Eds), Applied Informatics, Springer, Cham, pp. 420–432.10.1007/978-3-030-61702-8_29
  5. Fondón, I., Sarmiento, A., García, A.I., Silvestre, M., Eloy, C., Polónia, A. and Aguiar, P. (2018). Automatic classification of tissue malignancy for breast carcinoma diagnosis, Computers in Biology and Medicine 96: 41–51.10.1016/j.compbiomed.2018.03.00329544146
  6. Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science 30(2): 325–336, DOI: 10.34768/amcs-2020-0025.
  7. Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics, Springer, New York.10.1007/978-0-387-84858-7
  8. Hayakawa, T., Prasath, S., Kawanaka, H., Aronow, B. and Tsuruoka, S. (2019). Computational nuclei segmentation methods in digital pathology: A survey, Archives of Computational Methods in Engineering 28: 1–13.10.1007/s11831-019-09366-4
  9. Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F. and Hahn, H.K. (2018). Deep learning nuclei detection: A simple approach can deliver state-of-the-art results, Computerized Medical Imaging and Graphics 70: 43–52.10.1016/j.compmedimag.2018.08.01030286333
  10. Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A. and Saleh Alghamdi, J. (2016). Automated nuclei segmentation of malignant using level sets, Microscopy Research and Technique 79(10): 993–997.10.1002/jemt.2273327476682
  11. Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—Current status and future potential, IEEE Reviews in Biomedical Engineering 7: 97–114.10.1109/RBME.2013.229580424802905
  12. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer Series in Statistics, Springer, New York.10.1007/978-1-4614-7138-7
  13. Jassem, J. and Krzakowski, M. (2018). Breast cancer, Oncology in Clinical Practice 14(4): 171–215.
  14. Kantavat, P., Kijsirikul, B., Songsiri, P., Fukui, K.-I. and Numao, M. (2018). Efficient decision trees for multi-class support vector machines using entropy and generalization error estimation, International Journal of Applied Mathematics and Computer Science 28(4): 705–717, DOI: 10.2478/amcs-2018-0054.10.2478/amcs-2018-0054
  15. Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19–31, DOI: 10.2478/amcs-2014-0002.10.2478/amcs-2014-0002
  16. Kowal, M., Skobel, M. and Nowicki, N. (2018). The feature selection problem in computer-assisted cytology, International Journal of Applied Mathematics and Computer Science 28(4): 759–770, DOI: 10.2478/amcs-2018-0058.10.2478/amcs-2018-0058
  17. Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry Part A 89(4): 338–349.10.1002/cyto.a.2282426945784
  18. Landini, G., Rueden, C., Schindelin, J., Hiner, M. and Pavie, B. (2004). Image colour deconvolution, https://imagej.net/Colour_Deconvolution.
  19. Litherland, J.C. (2002). Should fine needle aspiration cytology in breast assessment be abandoned?, Clinical Radiology 57(2): 81–84.10.1053/crad.2001.087511977938
  20. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C. and Thomas, N.E. (2009). A method for normalizing histology slides for quantitative analysis, IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Boston, USA, pp. 1107–1110.
  21. Mittal, H. and Saraswat, M. (2019). An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering, Swarm and Evolutionary Computation 45: 15–32.10.1016/j.swevo.2018.12.005
  22. Naylor, P., Laé, M., Reyal, F. and Walter, T. (2017). Nuclei segmentation in histopathology images using deep neural networks, IEEE 14th International Symposium on Biomedical Imaging, Melbourne, Australia, pp. 933–936.
  23. Paramanandam, M., O‘Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE 11(9): 1–15.10.1371/journal.pone.0162053502986627649496
  24. Piorkowski, A. and Gertych, A. (2019). Color normalization approach to adjust nuclei segmentation in images of hematoxylin and eosin stained tissue, in E. Piętka et al. (Eds), Information Technology in Biomedicine, Springer, Cham, pp. 393–406.10.1007/978-3-319-91211-0_35
  25. R Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org.
  26. Rabinovich, A., Agarwal, S., Laris, C., Price, J. and Belongie, S. (2004). Unsupervised color decomposition of histologically stained tissue samples, in S. Thrun et al. (Eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, pp. 667–674.
  27. Ronneberger, O., P.Fischer and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, in N. Navab et al. (Eds), Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, pp. 234–241.10.1007/978-3-319-24574-4_28
  28. Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical & Quantitative Cytology & Histology 23(4): 291–299.
  29. Sadanandan, S.K., Ranefall, P., Le Guyader, S. and Wahlby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Reports 7(7860): 1–7.10.1038/s41598-017-07599-6555280028798336
  30. Santanu, R., Alok, J., Shyam, L. and Jyoti, K. (2018). A study about color normalization methods for histopathology images, Micron 114: 42–61.10.1016/j.micron.2018.07.00530096632
  31. Schindelin, J., Arganda-Carreras, I. Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Albert A. (2012). FIJI: An open-source platform for biological-image analysis, Nature Methods 9: 676–682.10.1038/nmeth.2019385584422743772
  32. Skobel, M., Kowal, M., Korbicz, J. and Obuchowicz, A. (2019). Cell nuclei segmentation using marker-controlled watershed and Bayesian object recognition, in E. Piętka et al. (Eds), International Conference on Information Technologies in Biomedicine, Springer International Publishing, Cham, pp. 407–418.10.1007/978-3-319-91211-0_36
  33. Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks, International Joint Conference on Neural Networks, Vancouver, Canada, pp. 2560–2567.
  34. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58(1): 267–288.10.1111/j.2517-6161.1996.tb02080.x
  35. Veta, M., van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A. and Pluim, J.P.W. (2013). Automatic nuclei segmentation in H&E stained breast cancer histopathology images, PLOS ONE 8(7):e70221.10.1371/journal.pone.0070221372642123922958
  36. Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6): 583–598.10.1109/34.87344
  37. Wang, D., Khosla, A., Gargeya, R., Irshad, H. and Beck, A.H. (2016). Deep learning for identifying metastatic breast cancer, arXiv: 1606.05718.
  38. Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review, IEEE Reviews in Biomedical Engineering 9: 234–263.10.1109/RBME.2016.2515127523346126742143
  39. Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers 53(11): 2405–2414.10.1109/TCSI.2006.884469
DOI: https://doi.org/10.34768/amcs-2021-0007 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 85 - 106
Submitted on: Mar 2, 2020
Accepted on: Dec 7, 2020
Published on: Apr 3, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Marek Kowal, Marcin Skobel, Artur Gramacki, Józef Korbicz, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.