Bruschewski, M., Freudenhammer, D., Buchenberg, W.B., Schiffer, H.-P. and Grundmann, S. (2016). Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models, Experiments in Fluids 57(5): 83.10.1007/s00348-016-2163-3
Bruschewski, M., Kolkmann, H., John, K. and Grundmann, S. (2019). Phase-contrast single-point imaging with synchronized encoding: A more reliable technique for in vitro flow quantification, Magnetic Resonance in Medicine 81(5): 2937–2946.10.1002/mrm.2760430426563
Datta, A., Kaur, A., Lauer, T. and Chabbouh, S. (2019). Exploiting multi-core and many-core parallelism for subspace clustering, International Journal of Applied Mathematics and Computer Science 29(1): 81–91, DOI: 10.2478/amcs-2019-0006.10.2478/amcs-2019-0006
Elkins, C.J. and Alley, M.T. (2007). Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion, Experiments in Fluids 43(6): 823–858.10.1007/s00348-007-0383-2
Gentleman, W.M. (1968). Matrix multiplication and fast Fourier transforms, Bell System Technical Journal 47(6): 1099–1103.10.1002/j.1538-7305.1968.tb00074.x
Holland, D.J., Malioutov, D.M., Blake, A., Sederman, A.J. and Gladden, L.F. (2010). Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing, Journal of Magnetic Resonance 203(2): 236–246.10.1016/j.jmr.2010.01.00120138789
John, K., Jahangir, S., Gawandalkar, U., Hogendoorn, W., Poelma, C., Grundmann, S. and Bruschewski, M. (2020a). Magnetic resonance velocimetry in high-speed turbulent flows: Sources of measurement errors and a new approach for higher accuracy, Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow 61(2): 27.10.1007/s00348-019-2849-4
John, K., Rauh, A., Bruschewski, M. and Grundmann, S. (2020b). Towards analyzing the influence of measurement errors in magnetic resonance imaging of fluid flows—Development of an interval-based iteration approach, Acta Cybernetica 24(3): 343–372.10.14232/actacyb.24.3.2020.5
Julier, S., Uhlmann, J. and Durrant-Whyte, H. (2000). A new approach for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control 45(3): 477–482.10.1109/9.847726
Kostin, G.V., Saurin, V.V., Aschemann, H. and Rauh, A. (2014). Integrodifferential approaches to frequency analysis and control design for compressible fluid flow in a pipeline element, Mathematical and Computer Modelling of Dynamical Systems 20(5): 504–527.10.1080/13873954.2013.842595
Măceş, D. and Stadtherr, M. (2013). Computing fuzzy trajectories for nonlinear dynamic systems, Computers & Chemical Engineering 52: 10–25.10.1016/j.compchemeng.2012.11.008
Niebergall, A., Zhang, S., Kunay, E., Keydana, G., Job, M., Uecker, M. and Frahm, J. (2013). Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction, Magnetic Resonance in Medicine 69(2): 477–485.10.1002/mrm.2427622498911
Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015.
Proakis, J.G. and Manolakis, D.G. (1996). Digital Signal Processing: Principles, Algorithms, and Applications, 3rd Edn, Prentice-Hall, Upper Saddle River.
Rauh, A., Dittrich, C., Senkel, L. and Aschemann, H. (2011). Sensitivity analysis for the design of robust nonlinear control strategies for energy-efficient pressure boosting systems in water supply, Proceedings of the 20th International Symposium on Industrial Electronics, ISIE 2011, Gdańsk, Poland, pp.1353–1358.
Rauh, A., John, K., Bruschewski, M. and Grundmann, S. (2020). Comparison of two different interval techniques for analyzing the influence of measurement uncertainty in compressed sensing for magnet resonance imaging, Proceedings of the 18th European Control Conference, ECC 2020, St. Petersburg, Russia, pp. 1865–1870.
Tamir, J., Ong, F., Cheng, J., Uecker, M. and Lustig, M. (2016). Generalized magnetic resonance image reconstruction using the Berkeley Advanced Reconstruction Toolbox, ISMRM Workshop on Data Sampling and Image Reconstruction, Sedona, USA, http://wwwuser.gwdg.de/~muecker1/sedona16-bart.pdf.
Theilheimer, F. (1969). A matrix version of the fast Fourier transform, IEEE Transactions on Audio and Electroacoustics 17(2): 158–161.10.1109/TAU.1969.1162031
Zhao, F., Noll, D., Nielsen, J.-F. and Fessler, J. (2012). Separate magnitude and phase regularization via compressed sensing, IEEE Transactions on Medical Imaging 31(9): 1713–1723.10.1109/TMI.2012.2196707354528422552571
Zhou, B., Yang, Y.-F. and Hu, B.-X. (2020). A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction, International Journal of Applied Mathematics and Computer Science 30(1): 113–122, DOI: 10.34768/amcs-2020-0009.