Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science 29(4): 739–757, DOI: 10.2478/amcs-2019-0055.10.2478/amcs-2019-0055
Chen, Q., Kruger, U. and Leung, A.Y.T. (2009). Cointegration testing method for monitoring nonstationary processes, Industrial and Engineering Chemistry Research 48(7): 3533–3543, DOI: 10.1021/ie801611s.10.1021/ie801611s
Dickey, D.P. (1981). Likelihood ratio statistics for autoregressive time serries with a unit root, Econometrica 49(4): 1057–1072, DOI: 10.2307/1912517.10.2307/1912517
Dong, J., Zhang, K., Huang, Y., Li, G. and Peng, K.X. (2015). Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process, Neurocomputing 154: 77–85, DOI: 10.1016/j.neucom.2014.12.017.10.1016/j.neucom.2014.12.017
Geng, Z.Q., Wang, Z., Hu, H.X., Han, Y.M., Lin, X.Y. and Zhong, Y.H. (2018). A fault detection method based on horizontal visibility graph-integrated complex networks: application to complex chemical processes, The Canadian Journal of Chemical Engineering 97(5): 1129–1138, DOI: 10.1002/cjce.23319.10.1002/cjce.23319
He, Z.M., Zhou, H.Y., Wang, J.Q., Chen, Z.W., Wang, D.Y. and Yan, X. (2015). An improved detection statistic for monitoring the nonstationary and nonlinear processes, Chemometrics and Intelligent Laboratory Systems 145: 114–124, DOI: 10.1016/j.chemolab.2015.04.016.10.1016/j.chemolab.2015.04.016
Jiang, P., Hu, Z.X., Liu, J., Yu, S.N. and Wu, F. (2016). Fault diagnosis based on chemical sensor data with an active deep neural network, Sensors 16(10): 01695, DOI: 10.3390/s16101695.10.3390/s16101695508748327754386
Lee, H., Ekanadham, C. and Ng, A.Y. (2008). Sparse deep belief net model for visual area v2, Proceedings of the 21st International Conference on Neural Networks, NIPS’07, Vancouver, Canada, pp. 873–880.
Leng, J.W. and Jiang, P.Y. (2016). A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm, Knowledge Based Systems 100: 188–199, DOI: 10.1016/j.knosys.2016.03.008.10.1016/j.knosys.2016.03.008
Lin, Y.L., Kruger, U. and Chen, Q. (2017). Monitoring nonstationary dynamic systems using cointegration and common-trends analysis, Industrial and Engineering Chemistry Research 56(31): 8895–8905, DOI: 10.1021/acs.iecr.7b00011.10.1021/acs.iecr.7b00011
Lin, Y.L., Kruger, U., Gu, F.S., Balland, A. and Chen, Q. (2019b). Monitoring nonstationary processes using stationary subspace analysis and fractional integration order estimation, Industrial and Engineering Chemistry Research 58(16): 6486–6504, DOI: 10.1021/acs.iecr.8b05099.10.1021/acs.iecr.8b05099
Lu, W., Liang, B., Cheng, Y., Meng, D. and Zhang, T. (2017). Deep model based domain adaptation for fault diagnosis, IEEE Transactions on Industrial Electronics 64(99): 2296–2305, DOI: 10.1109/TIE.2016.2627020.10.1109/TIE.2016.2627020
Ma, J., Li, G. and Zhou, D. (2018). Fault prognosis technology for non-Gaussian and nonlinear processes based on KICA reconstruction, Canadian Journal of Chemical Engineering 96(2): 515–520, DOI: 10.1002/cjce.23051.10.1002/cjce.23051
Montmain, J., Labreuche, C., Imoussaten, A. and Trousset, F. (2015). Multi-criteria improvement of complex systems, Information Sciences 291: 61–84, DOI: 10.1016/j.ins.2014.08.027.10.1016/j.ins.2014.08.027
Pröll, S., Lunze, J. and Jarmolowitz, F. (2018). From structural analysis to observer-based residual generation for fault detection, International Journal of Applied Mathematics and Computer Science 28(2): 233–245, DOI: 10.2478/amcs-2018-0017.10.2478/amcs-2018-0017
Ren, H., Chai, Y., Qu, J.F., Ye, X. and Tang, Q. (2018). A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models: A case study on cryogenic propellant loading system, Neurocomputing 275: 2111–2125, DOI: 10.1016/j.neucom.2017.10.063.10.1016/j.neucom.2017.10.063
Ren, H., Qu, J.F., Chai, Y., Tang, Q. and Ye, X. (2017). Deep learning for fault diagnosis: The state of the art and challenge, Control and Decision 32(8): 1343–1358, DOI: 10.13195/j.kzyjc.2016.1625.
Sadough Vanini, Z.N., Khorasani, K. and Meskin, N. (2014). Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach, Information Sciences 259(3): 234–251, DOI: 10.1016/j.ins.2013.05.032.10.1016/j.ins.2013.05.032
Shang, J., Chen, M., Ji, H., Zhou, D., Zhang, H. and Li, M. (2017). Dominant trend based logistic regression for fault diagnosis in nonstationary processes, Control Engineering Practice 66: 156–168, DOI: 10.1016/j.conengprac.2017.06.011.10.1016/j.conengprac.2017.06.011
Souza, B.D., Kuhn, E.V. and Seara, R. (2019). A time-varying autoregressive model for characterizing nonstationary processes, IEEE Signal Processing Letters 26(1): 134–138, DOI: 10.1109/LSP.2018.2880086.10.1109/LSP.2018.2880086
Sun, H., Zhang, S.M., Zhao, C.H. and Gao, F.R. (2017). A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information, Industrial and Engineering Chemistry Research 56(24): 6993–7008, DOI: 10.1021/acs.iecr.7b00156.10.1021/acs.iecr.7b00156
Utkin, L.V., Zaborovskii, V.S. and Popov, S.G. (2016). Detection of anomalous behavior in a robot system based on deep learning elements, Automatic Control and Computer Sciences 50(8): 726–733, DOI: 10.3103/S0146411616080319.10.3103/S0146411616080319
Worden, K., Baldacchino, T., Rowson, J. and Cross, E.J. (2016). Some recent developments in SHM based on nonstationary time series analysis, Proceedings of the IEEE 104(8): 1589–1603, DOI: 10.1109/JPROC.2016.2573596.10.1109/JPROC.2016.2573596
Xi, X.P., Chen, M.Y., Zhang, H.W. and Zhou, D.H. (2018). An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty, Mechanical Systems and Signal Processing 105: 467–480, DOI: 10.1016/j.ymssp.2017.12.017.10.1016/j.ymssp.2017.12.017
Yan, W.W., Guo, P.J., Gong, L.A. and Li, Z.K. (2016). Nonlinear and robust statistical process monitoring based on variant autoencoders, Chemometrics and Intelligent Laboratory Systems 158: 31–40, DOI: 10.1016/j.chemolab.2016.08.007.10.1016/j.chemolab.2016.08.007
Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control 22(9): 1567–1581, DOI: 10.1016/j.jprocont.2012.06.009.10.1016/j.jprocont.2012.06.009
Zhang, Q., Yang, L.T. and Chen, Z.W. (2016). Deep computation model for unsupervised feature learning on big data, IEEE Transactions on Services Computing 9(1): 161–171, DOI: 10.1109/TSC.2015.2497705.10.1109/TSC.2015.2497705
Zhang, Z.H., Jiang, T., Zhan, C.J. and Yang, Y.P. (2019). Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring, Journal of Process Control 75: 136–155, DOI: 10.1016/j.jprocont.2019.01.008.10.1016/j.jprocont.2019.01.008
Zhang, Z., Jiang, T., Li, S. and Yang, Y. (2018). Automated feature learning for nonlinear process monitoring—An approach using stacked denoising autoencoder and k-nearest neighbor rule, Journal of Process Control 64: 49–61, DOI: 10.1016/j.jprocont.2018.02.004.10.1016/j.jprocont.2018.02.004
Zhao, C.H. and Huang, B. (2018a). A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis, American Institute of Chemical Engineers 64(5): 1662–1681, DOI: 10.1002/aic.16048.10.1002/aic.16048
Zhao, C.H. and Huang, B. (2018b). Incipient fault detection for complex industrial processes with stationary and nonstationary hybrid characteristics, Industrial and Engineering Chemistry Research 57: 5045–5057, DOI: 10.1021/acs.iecr.8b00233.10.1021/acs.iecr.8b00233
Zhirabok, A. and Shumsky, A. (2018). Fault diagnosis in nonlinear hybrid systems, International Journal of Applied Mathematics and Computer Science 28(4): 635–648, DOI: 10.2478/amcs-2018-0049.10.2478/amcs-2018-0049
Zou, X.Y. and Zhao, C.H. (2019). Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables, Industrial and Engineering Chemistry Research 58: 1341–1351, DOI: 10.1021/acs.iecr.8b05005.10.1021/acs.iecr.8b05005