Ammour, A.S., Djennoune, S., Aggoune, W. and Bettayeb, M. (2015). Stabilization of fractional-order linear systems with state and input delay, Asian Journal of Control 17(5): 1946–1954.10.1002/asjc.1094
Athanasopoulos, N., Bitsoris, G. and Vassilaki, M. (2010). Stabilization of bilinear continuous-time systems, 18th Mediterranean Conference on Control & Automation, Marrakech, Morocco, pp. 442–447.
Balochian, S. (2015). On the stabilization of linear time invariant fractional order commensurate switched systems, Asian Journal of Control 17(1): 133–141.10.1002/asjc.858
Benzaouia, A., Hmamed, A., Mesquine, F., Benhayoun, M. and Tadeo, F. (2014). Stabilization of continuous-time fractional positive systems by using a Lyapunov function, IEEE Transactions on Automatic Control 59(8): 2203–2208.10.1109/TAC.2014.2303231
Chen, L., Wu, R., He, Y. and Yin, L. (2015). Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Applied Mathematics & Computation 257: 274–284.10.1016/j.amc.2014.12.103
Dastjerdi, A.A., Vinagre, B.M., Chen, Y. and HosseinNia, S.H. (2019). Linear fractional order controllers: A survey in the frequency domain, Annual Review in Control 47: 51–70.10.1016/j.arcontrol.2019.03.008
Fernandez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Munoz-Vega, R. and Hernandez-Martinez, E.G. (2016). Lyapunov functions for a class of nonlinear systems using caputo derivative, Communications in Nonlinear Science & Numerical Simulation 43: 91–99.10.1016/j.cnsns.2016.06.031
Hao, Y. and Jiang, B. (2016). Stability of fractional-order switched non-linear systems, IET Control Theory & Applications 10(8): 965–970.10.1049/iet-cta.2015.0989
Jiao, Z., Chen, Y.Q. and Zhong, Y. (2013). Stability analysis of linear time-invariant distributed-order systems, Asian Journal of Control 15(3): 640–647.10.1002/asjc.578
Kaczorek, T. (2010). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.10.1002/asjc.165
Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics & Computer Science 28(1): 135–140, DOI: 10.2478/amcs-2018-0010.10.2478/amcs-2018-0010
Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.10.2478/amcs-2019-0007
Karthikeyan, R., Anitha, K. and Prakash, D. (2017). Hyperchaotic chameleon: Fractional order FPGA implementation, Complexity 2017(1): 1–16.10.1155/2017/8979408
Lenka, B.K. (2018). Fractional comparison method and asymptotic stability results for multivariable fractional order systems, Communications in Nonlinear Science and Numerical Simulation 69: 398–415.10.1016/j.cnsns.2018.09.016
Lenka, B.K. and Banerjee, S. (2016). Asymptotic stability and stabilization of a class of nonautonomous fractional order systems, Nonlinear Dynamics 85(1): 167–177.10.1007/s11071-016-2676-6
Li, Y., Chen, Y.Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffer stability, Computers & Mathematics with Applications 59(5): 1810–1821.10.1016/j.camwa.2009.08.019
Li, Y., Zhao, D., Chen, Y., Podlubny, I. and Zhang, C. (2019). Finite energy Lyapunov function candidate for fractional order general nonlinear systems, Communications in Nonlinear Science and Numerical Simulation 78: 1–16.10.1016/j.cnsns.2019.104886
Lim, Y.-H. and Ahn, H.-S. (2013). On the positive invariance of polyhedral sets in fractional-order linear systems, Auto-matica 49(12): 3690–3694.10.1016/j.automatica.2013.09.020
Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y. and Wu, X. (2019). The novel fractional discrete multivariate grey system model and its applications, Applied Mathematical Modelling 40: 402–424.10.1016/j.apm.2019.01.039
Martinezfuentes, O. and Martinezguerra, R. (2018). A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dynamics 94(3): 1973–1986.10.1007/s11071-018-4469-6
Sabatier, J., Farges, C. and Trigeassou, J.C. (2013). Fractional systems state space description: Some wrong ideas and proposed solutions, Journal of Vibration & Control 20(7): 1076–1084.10.1177/1077546313481839
Sabatier, J., Merveillaut, M., Malti, R. and Oustaloup, A. (2010). How to impose physically coherent initial conditions to a fractional system, Communications in Nonlinear Science & Numerical Simulation 15(5): 1318–1326.10.1016/j.cnsns.2009.05.070
Shen, J. and Lam, J. (2016). Stability and performance analysis for positive fractional-order systems with time-varying delays, IEEE Transactions on Automatic Control 61(9): 2676–2681.10.1109/TAC.2015.2504516
Si, X. and Yang, H. (2021). A new method for judgment and computation of stability and stabilization of fractional order positive systems with constraints, Journal of Shandong University of Science and Technology (Natural Science) 40(1): 12–20.
Wang, Z., Yang, D., Ma, t. and Ning, S. (2014). Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dynamics 75(1–2): 387–402.10.1007/s11071-013-1073-7
Wang, Z., Yang, D. and Zhang, H. (2016). Stability analysis on a class of nonlinear fractional-order systems, Nonlinear Dynamics 86(2): 1023–1033.10.1007/s11071-016-2943-6
Yan, L., Chen, Y. Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications 59(5): 1810–1821.10.1016/j.camwa.2009.08.019
Yang, H. and Hu, Y. (2020). Numerical checking method for positive invariance of polyhedral sets for linear dynamical system, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(3): 23–29.
Yang, H. and Jia, Y. (2019). New conditions and numerical checking method for the practical stability of fractional order positive discrete-time linear systems, International Journal of Nonlinear Sciences and Numerical Simulation 20(3): 315–323.10.1515/ijnsns-2018-0063
Yepez-Martinez, H. and Gomez-Aguilar, J. (2018). A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM), Journal of Computational & Applied Mathematics 346: 247–260.10.1016/j.cam.2018.07.023
Zhang, H., Wang, X.Y. and Lin, X.H. (2016). Stability and control of fractional chaotic complex networks with mixed interval uncertainties, Asian Journal of Control 19(1): 106–115.10.1002/asjc.1333
Zhang, R., Tian, G., Yang, S. and Hefei, C. (2015a). Stability analysis of a class of fractional order nonlinear systems with order lying in (0,2), ISA Transactions 56: 102–110.10.1016/j.isatra.2014.12.00625617942
Zhang, S., Yu, Y. and Wang, H. (2015b). Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis Hybrid Systems 16: 104–121.10.1016/j.nahs.2014.10.001
Zhang, S., Yu, Y. and Yu, J. (2017). LMI conditions for global stability of fractional-order neural networks, IEEE Transactions on Neural Networks & Learning Systems 28(10): 2423–2433.10.1109/TNNLS.2016.257484227529877
Zhao, Y., Li, Y., Zhou, F., Zhou, Z. and Chen, Y. (2017). An iterative learning approach to identify fractional order KiBaM model, IEEE/CAA Journal of Automatica Sinica 4(2): 322–331.10.1109/JAS.2017.7510358