Have a personal or library account? Click to login
Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems Cover

Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems

Open Access
|Apr 2021

References

  1. Ammour, A.S., Djennoune, S., Aggoune, W. and Bettayeb, M. (2015). Stabilization of fractional-order linear systems with state and input delay, Asian Journal of Control 17(5): 1946–1954.10.1002/asjc.1094
  2. Athanasopoulos, N., Bitsoris, G. and Vassilaki, M. (2010). Stabilization of bilinear continuous-time systems, 18th Mediterranean Conference on Control & Automation, Marrakech, Morocco, pp. 442–447.
  3. Balochian, S. (2015). On the stabilization of linear time invariant fractional order commensurate switched systems, Asian Journal of Control 17(1): 133–141.10.1002/asjc.858
  4. Benzaouia, A., Hmamed, A., Mesquine, F., Benhayoun, M. and Tadeo, F. (2014). Stabilization of continuous-time fractional positive systems by using a Lyapunov function, IEEE Transactions on Automatic Control 59(8): 2203–2208.10.1109/TAC.2014.2303231
  5. Chen, L., Wu, R., He, Y. and Yin, L. (2015). Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Applied Mathematics & Computation 257: 274–284.10.1016/j.amc.2014.12.103
  6. Dastjerdi, A.A., Vinagre, B.M., Chen, Y. and HosseinNia, S.H. (2019). Linear fractional order controllers: A survey in the frequency domain, Annual Review in Control 47: 51–70.10.1016/j.arcontrol.2019.03.008
  7. Fernandez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Munoz-Vega, R. and Hernandez-Martinez, E.G. (2016). Lyapunov functions for a class of nonlinear systems using caputo derivative, Communications in Nonlinear Science & Numerical Simulation 43: 91–99.10.1016/j.cnsns.2016.06.031
  8. Hao, Y. and Jiang, B. (2016). Stability of fractional-order switched non-linear systems, IET Control Theory & Applications 10(8): 965–970.10.1049/iet-cta.2015.0989
  9. Jiao, Z., Chen, Y.Q. and Zhong, Y. (2013). Stability analysis of linear time-invariant distributed-order systems, Asian Journal of Control 15(3): 640–647.10.1002/asjc.578
  10. Kaczorek, T. (2010). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.10.1002/asjc.165
  11. Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics & Computer Science 28(1): 135–140, DOI: 10.2478/amcs-2018-0010.10.2478/amcs-2018-0010
  12. Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.10.2478/amcs-2019-0007
  13. Karthikeyan, R., Anitha, K. and Prakash, D. (2017). Hyperchaotic chameleon: Fractional order FPGA implementation, Complexity 2017(1): 1–16.10.1155/2017/8979408
  14. Lenka, B.K. (2018). Fractional comparison method and asymptotic stability results for multivariable fractional order systems, Communications in Nonlinear Science and Numerical Simulation 69: 398–415.10.1016/j.cnsns.2018.09.016
  15. Lenka, B.K. and Banerjee, S. (2016). Asymptotic stability and stabilization of a class of nonautonomous fractional order systems, Nonlinear Dynamics 85(1): 167–177.10.1007/s11071-016-2676-6
  16. Li, Y., Chen, Y.Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffer stability, Computers & Mathematics with Applications 59(5): 1810–1821.10.1016/j.camwa.2009.08.019
  17. Li, Y., Zhao, D., Chen, Y., Podlubny, I. and Zhang, C. (2019). Finite energy Lyapunov function candidate for fractional order general nonlinear systems, Communications in Nonlinear Science and Numerical Simulation 78: 1–16.10.1016/j.cnsns.2019.104886
  18. Lim, Y.-H. and Ahn, H.-S. (2013). On the positive invariance of polyhedral sets in fractional-order linear systems, Auto-matica 49(12): 3690–3694.10.1016/j.automatica.2013.09.020
  19. Liu, S., Zhou, X.F., Li, X. and Jiang, W. (2016). Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays, Applied Mathematics Letters 65(1): 32–39.10.1016/j.aml.2016.10.002
  20. Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y. and Wu, X. (2019). The novel fractional discrete multivariate grey system model and its applications, Applied Mathematical Modelling 40: 402–424.10.1016/j.apm.2019.01.039
  21. Martinezfuentes, O. and Martinezguerra, R. (2018). A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dynamics 94(3): 1973–1986.10.1007/s11071-018-4469-6
  22. Sabatier, J., Farges, C. and Trigeassou, J.C. (2013). Fractional systems state space description: Some wrong ideas and proposed solutions, Journal of Vibration & Control 20(7): 1076–1084.10.1177/1077546313481839
  23. Sabatier, J., Merveillaut, M., Malti, R. and Oustaloup, A. (2010). How to impose physically coherent initial conditions to a fractional system, Communications in Nonlinear Science & Numerical Simulation 15(5): 1318–1326.10.1016/j.cnsns.2009.05.070
  24. Shen, J. and Lam, J. (2016). Stability and performance analysis for positive fractional-order systems with time-varying delays, IEEE Transactions on Automatic Control 61(9): 2676–2681.10.1109/TAC.2015.2504516
  25. Si, X. and Yang, H. (2021). A new method for judgment and computation of stability and stabilization of fractional order positive systems with constraints, Journal of Shandong University of Science and Technology (Natural Science) 40(1): 12–20.
  26. Song, X. and Zhen, W. (2013). Dynamic output feedback control for fractional-order systems, Asian Journal of Control 15(3): 834–848.10.1002/asjc.592
  27. Wang, Z., Yang, D., Ma, t. and Ning, S. (2014). Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dynamics 75(1–2): 387–402.10.1007/s11071-013-1073-7
  28. Wang, Z., Yang, D. and Zhang, H. (2016). Stability analysis on a class of nonlinear fractional-order systems, Nonlinear Dynamics 86(2): 1023–1033.10.1007/s11071-016-2943-6
  29. Yan, L., Chen, Y. Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications 59(5): 1810–1821.10.1016/j.camwa.2009.08.019
  30. Yang, H. and Hu, Y. (2020). Numerical checking method for positive invariance of polyhedral sets for linear dynamical system, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(3): 23–29.
  31. Yang, H. and Jia, Y. (2019). New conditions and numerical checking method for the practical stability of fractional order positive discrete-time linear systems, International Journal of Nonlinear Sciences and Numerical Simulation 20(3): 315–323.10.1515/ijnsns-2018-0063
  32. Yepez-Martinez, H. and Gomez-Aguilar, J. (2018). A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM), Journal of Computational & Applied Mathematics 346: 247–260.10.1016/j.cam.2018.07.023
  33. Yin, C., Zhong, S.M., Huang, X. and Cheng, Y. (2015). Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance, Applied Mathematics & Computation 269: 351–362.10.1016/j.amc.2015.07.059
  34. Zhang, H., Wang, X.Y. and Lin, X.H. (2016). Stability and control of fractional chaotic complex networks with mixed interval uncertainties, Asian Journal of Control 19(1): 106–115.10.1002/asjc.1333
  35. Zhang, R., Tian, G., Yang, S. and Hefei, C. (2015a). Stability analysis of a class of fractional order nonlinear systems with order lying in (0,2), ISA Transactions 56: 102–110.10.1016/j.isatra.2014.12.00625617942
  36. Zhang, S., Yu, Y. and Wang, H. (2015b). Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis Hybrid Systems 16: 104–121.10.1016/j.nahs.2014.10.001
  37. Zhang, S., Yu, Y. and Yu, J. (2017). LMI conditions for global stability of fractional-order neural networks, IEEE Transactions on Neural Networks & Learning Systems 28(10): 2423–2433.10.1109/TNNLS.2016.257484227529877
  38. Zhao, Y., Li, Y., Zhou, F., Zhou, Z. and Chen, Y. (2017). An iterative learning approach to identify fractional order KiBaM model, IEEE/CAA Journal of Automatica Sinica 4(2): 322–331.10.1109/JAS.2017.7510358
DOI: https://doi.org/10.34768/amcs-2021-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 17 - 28
Submitted on: Jun 2, 2020
Accepted on: Nov 6, 2020
Published on: Apr 3, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Xindong Si, Hongli Yang, Ivan G. Ivanov, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.