Have a personal or library account? Click to login
An approximate solution of the affine-quadratic control problem based on the concept of optimal damping Cover

An approximate solution of the affine-quadratic control problem based on the concept of optimal damping

Open Access
|Apr 2021

References

  1. Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.10.2478/amcs-2019-0051
  2. Balakrishnan, A. (1966). On the controllability of a nonlinear system, Proceedings of the National Academy of Sciences of the USA 55(3): 465–468.10.1073/pnas.55.3.46522417016591336
  3. Collado, J., Lozano, R. and Fantoni, I. (2000). Control of convey-crane based on passivity, Proceedings of the American Control Conference, ACC 2000, Chicago, USA, pp. 1260–1264.
  4. Do, K. and Pan, J. (2009). Control of Ships and Underwater Vehicles. Design for Underactuated and Nonlinear Marine Systems, Springer-Verlag, London.10.1007/978-1-84882-730-1
  5. Fantoni, I. and Lozano, R. (2002). Non-linear Control for Underactuated Mechanical Systems, Springer-Verlag, London.10.1007/978-1-4471-0177-2
  6. Fossen, T.I. (1994). Guidance and Control of Ocean Vehicles, John Wiley and Sons, New York.
  7. Geering, H.P. (2007). Optimal Control with Engineering Applications, Springer-Verlag, Berlin/Heidelberg.
  8. Hahn, W. and Baartz, A.P. (1967). Stability of Motion, Springer, London.10.1007/978-3-642-50085-5
  9. Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs.
  10. Lewis, F.L., Vrabie, D.L. and Syrmos, V.L. (2012). Optimal Control, John Wiley and Sons, Hoboken.10.1002/9781118122631
  11. Lukes, D.L. (1969). Optimal regulation of nonlinear dynamic systems, SIAM Journal on Control and Optimization 7(1): 75–100.10.1137/0307007
  12. Sepulchre, R., Jankovic, M. and Kokotovic, P. (1997). Constructive Nonlinear Control, Springer, New York.10.1007/978-1-4471-0967-9
  13. Slotine, J. and Li, W. (1991). Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs.
  14. Sontag, E.D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd Edition, Springer, New York.
  15. Sotnikova, M.V. and Veremey, E.I. (2013). Dynamic positioning based on nonlinear MPC, IFAC Proceedings Volumes 9(1): 31–36.
  16. Veremey, E.I. (2017). Separate filtering correction of observer-based marine positioning control laws, International Journal of Control 90(8): 1561–1575.10.1080/00207179.2016.1214749
  17. Veremey, E.I. (2019). Special spectral approach to solutions of SISO LTI h-optimization problems, International Journal of Automation and Computing 16(1): 112–128.10.1007/s11633-017-1110-y
  18. Veremey, E.I. and Sotnikova, M.V. (2019). Optimization approach to guidance and control of marine vehicles, WIT Transactions on the Built Environment 187(1): 45–56.10.2495/MT190051
  19. Wasilewski, M., Pisarski, D., Konowrocki, R. and Bayer, C.I. (2019). A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances, International Journal of Applied Mathematics and Computer Science 29(2): 285–303, DOI: 10.2478/amcs-2019-0021.10.2478/amcs-2019-0021
  20. Zubov, V.I. (1962). Oscillations in Nonlinear and Controlled Systems, Sudpromgiz, Leningrad, (in Russian).
  21. Zubov, V.I. (1966). Theory of Optimal Control of Ships and Other Moving Objects, Sudpromgiz, Leningrad, (in Russian).
  22. Zubov, V.I. (1978). Théorie de la Commande, Mir, Moscow.
DOI: https://doi.org/10.34768/amcs-2021-0001 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 5 - 15
Submitted on: Jun 5, 2020
Accepted on: Nov 26, 2020
Published on: Apr 3, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Evgeny I. Veremey, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.