Have a personal or library account? Click to login
AI based algorithms for the detection of (ir)regularity in musical structure Cover

AI based algorithms for the detection of (ir)regularity in musical structure

By: Lorena Mihelač and  Janez Povh  
Open Access
|Dec 2020

References

  1. Agres, K.R., Abdallah, S. and Pearce, M.T. (2018). Information-theoretic properties of auditory sequences dynamically influence expectation and memory, Cognitive Science42(1): 43–76.10.1111/cogs.1247728121017
  2. Arthur, C. (2018). A perceptual study of scale-degree qualia in context, Music Perception35(3): 295–314.10.1525/mp.2018.35.3.295
  3. Bader, M., Schröger, E. and Grimm, S. (2017). How regularity representations of short sound patterns that are based on relative or absolute pitch information establish over time: An EEG study, PlosONE12(5): e0176981.10.1371/journal.pone.0176981541761428472146
  4. Bendixen, A., Schröger, E. and Winkler, I. (2009). I heard that coming: Event-related potential evidence for stimulus-driven prediction in the auditory system, The Journal of Neuroscience29(26): 8447–8451.10.1523/JNEUROSCI.1493-09.2009666564919571135
  5. Benward, B. and Saker, M. (2008). Music in Theory and Practice, William Glass, New York, NY.
  6. Bharucha, J.J. (1987). Music cognition and perceptual facilitation: A connectionist frame-work, Music Perception5(1): 1–30.10.2307/40285384
  7. Boltz, M.G. (1999). The processing of melodic and temporal information: independent or unified dimensions?, Journal of New Music Research28: 67–79.10.1076/jnmr.28.1.67.3121
  8. Bouwer, F. and Honing, H. (2012). Rhythmic regularity revisited: Is beat induction indeed pre-attentive?, Proceedings of the 12th International Conference of the European Society for the Cognitive Sciences of Music, Thessaloniki, Greece, pp. 122–127.
  9. Burns, E.M. (1999). Intervals, scales, and tuning, in D. Deutsch (Ed.), The Psychology of Music, Academic Press, New York, NY, pp. 215–264.10.1016/B978-012213564-4/50008-1
  10. Busch, R. (1985). On the horizontal and vertical presentation of musical ideas and on musical space (I), Tempo (154): 2–10.10.1017/S0040298200021434
  11. Butler, D. and Brown, H. (1994). Describing the mental representation of tonality in music, in R. Aiello and J.A. Sloboda (Eds), Musical Perceptions, Oxford University Press, New York, NY, pp. 191–212.
  12. Cleary, J.G., Teahan, W.J. and Witten, I.H. (1995). Unbounded length contexts for PPM, Proceedings of the Data Compression Conference, DCC’95, Snowbird, UT, USA, pp. 52–61.
  13. Cleary, J.G. and Witten, I. (1984). Data compression using adaptive coding and partial string matching, IEEE Transactions on Communications32(4): 396–402.10.1109/TCOM.1984.1096090
  14. Dahlhaus, C. (2014). Studies on the Origin of Harmonic Tonality, Princeton University Press, Princeton, NJ.
  15. Edmonds, B. (1995). What is complexity? The philosophy of complexity per se with application to some examples in evolution, The Evolution of Complexity, Brussels, Belgium.
  16. Feldman, J. (1997). Regularity-based perceptual grouping, Computational Intelligence13(4): 582–623.10.1111/0824-7935.00052
  17. Finnas, L. (1989). How can musical preferences be modified? A research review, Bulletin of the Council for Research in Music Education102: 1–58.
  18. Fritsch, S., Guenther, F. and Guenther, M.F. (2019). Package ‘neuralnet’, https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf.
  19. Gold, B.P., Pearce, M.T., Mas-Herrero, E., Dagher, A. and Zatorre, R.J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning?, Journal of Neuroscience39(47): 9397–9409.10.1523/JNEUROSCI.0428-19.2019686781131636112
  20. Grassberger, P. (2004). Problems in quantifying self-organized complexity, Helvetica Physica Acta62(5): 498–511.
  21. Griffiths, T.D., Johnsrude, I., Dean, J.L. and Green, G.G. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound?, NeuroRe-port10(18): 3825–3830.10.1097/00001756-199912160-0001910716217
  22. Herbert, R. (2012). Young people’s use and subjective experience of music outside school, Proceedings of the 12th International Conference on Music Perception and Cognition and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music, Thessaloniki, Greece, pp. 423–430.
  23. Holleran, S., Jones, M.R. and Butler, D. (1995). Perceiving implied harmony: The influence of melodic and harmonic context, Journal of Experimental Psychology: LMC21(3): 737–753.10.1037/0278-7393.21.3.737
  24. Huron, D. (2001). Tone and voice: A derivation of the rules of voice-leading from perceptual principles, Music Perception11(1): 1–64.10.1525/mp.2001.19.1.1
  25. Jackendoff, R. (2009). Parallels and nonparallels between language and music, Music Perception26(3): 195–204.10.1525/mp.2009.26.3.195
  26. Jones, M.R. and Boltz, M. (1989). Dynamic attending and responses to time, Psychology Revue96(3): 459–491.10.1037/0033-295X.96.3.459
  27. Justus, T. and Bharucha, J. (2003). Music perception and cognition, in A. Yantis and H. Pasler (Eds), Stevens Handbook of Experimental Psychology, Volume I: Sensation and Perception, Wiley, New York, NY, pp. 453–492.
  28. Kotsiantis, S., Kanellopoulos, D. and Pintelas, P.E. (2006). Handling imbalanced datasets: A review, GESTS International Transactions on Computer Science and Engineering30(1): 25–36.
  29. Kramer, J.D. (1988). The Time of Music: New Meanings, New Temporalities, New Listening Strategies, Schirmer Books, New York, NY.
  30. Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions, Progress in Artificial Intelligence5(4): 221–232.10.1007/s13748-016-0094-0
  31. Krumhansl, C.L. (2000). Rhythm and pitch in music cognition, Psychological Bulletin126(1): 159–179.10.1037/0033-2909.126.1.15910668354
  32. Krumhansl, C.L. (2004). The cognition of tonality—As we know it today, Journal of New Music Research33(3): 253–268.10.1080/0929821042000317831
  33. Lerdahl, F. and Jackendoff, R. (1983). An overview of hierarchical structure in music, Music Perception1(2): 229–252.10.2307/40285257
  34. Loui, P. (2012). Learning and liking of melody and harmony: Further studies in artificial grammar learning, Topics in Cognitive Science4(4): 554–567.10.1111/j.1756-8765.2012.01208.x
  35. Manjunath, B.S., Wu, P., Newsam, S. and Shin, H.D. (2000). A texture descriptor for browsing and similarity retrieval, Signal Processing: Image Communication16(1–2): 33–43.10.1016/S0923-5965(00)00016-3
  36. Melara, R.D. and Algom, D. (2003). Driven by information: A tectonic theory of stroop effects, Psychological Review110(3): 422–471.10.1037/0033-295X.110.3.422
  37. Meyer, L.B. (1957). Meaning in music and information theory, Journal of Aesthetics and Art Criticism15(4): 412–424.10.1111/1540_6245.jaac15.4.0412
  38. Mihelač, L. (2017). Napovedovanje slušne sprejemljivosti na osnovi entropije harmonije, Master’s thesis, School Center, Novo Mesto.
  39. Mihelač, L. and Povh, J. (2017). Predicting the acceptability of music with entropy of harmony, 14th International Symposium on Operations Research in Slovenia, SOR’17, Bled, Slovenia, pp. 371–375.
  40. Mihelač, L. and Povh, J. (2020). The impact of the complexity of harmony on the acceptability of music, ACM Transactions on Applied Perception17(1): 1–27.10.1145/3375014
  41. Mihelač, L. and Povh, J. (2019). The impact of harmony on the perception of music, 15th International Symposium on Operations Research in Slovenia SOR’19, Bled, Slovenia, pp. 360–365.
  42. Mihelač, L., Wiggins, A.G., Lavrač, N. and Povh, J. (2018). Entropy and acceptability: Information dynamics and music acceptance, Proceedings of ICMPC15/ESCOM10, Graz, Austria, pp. 313–317.
  43. Näätänen, R., Paavilainen, P., Rinne, T. and Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review, Clinical Neurophysiology118(12): 2544–2590.10.1016/j.clinph.2007.04.02617931964
  44. Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication–Realisation Model, University of Chicago Press, Chicago, IL.
  45. Parncutt, R. (1989). Harmony: A Psychoacoustical Approach, Springer, Berlin.10.1007/978-3-642-74831-8
  46. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H. and Guibas, L.J. (2008). Discovering structural regularity in 3D geometry, ACM Transactions on Graphics27(3), Article no. 43.
  47. Pearce, M.T. (2005). The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition, PhD thesis, City University, London.
  48. Pearce, M.T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation, Annals of the New York Academy of Sciences1423(1): 378–395.10.1111/nyas.13654684974929749625
  49. Pearce, M.T., Müllensiefen, D. and Wiggins, G.A. (2010a). Melodic grouping in music information retrieval: New methods and applications, in Z.W. Raś and A.A. Wieczorkowska (Eds), Advances in Music Information Retrieval, Springer, Berlin, pp. 364–388.10.1007/978-3-642-11674-2_16
  50. Pearce, M.T., Müllensiefen, D. and Wiggins, G.A. (2010b). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison, Perception39(10): 1365–1389.10.1068/p650721180358
  51. Pearce, M.T., Ruiz, M.H., Kapasi, S., Wiggins, G.A. and Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation, NeuroImage50(1): 302–313.10.1016/j.neuroimage.2009.12.01920005297
  52. Pearce, M.T. and Wiggins, G.A. (2012). Auditory expectation: The information dynamics of music perception and cognition, Topics in Cognitive Science4(4): 625–652.10.1111/j.1756-8765.2012.01214.x22847872
  53. Pearce, M. and Wiggins, G. (2006). The information dynamics of melodic boundary detection, Proceedings of the 9th International Conference on Music Perception and Cognition, Bologna, Italy, pp. 860–865.
  54. Peretz, I. and Zatorre, R.J. (2005). Brain organization for music processing, Annual Review of Psychology56: 89–114.10.1146/annurev.psych.56.091103.07022515709930
  55. Piotrowska, M., Korvel, G., Kostek, B., Ciszewski, T. and Czy˙zewski, A. (2019). Machine learning-based analysis of English lateral allophones, International Journal of Applied Mathematics and Computer Science29(2): 393–405, DOI: 10.2478/amcs-2019-0029.10.2478/amcs-2019-0029
  56. Platt, J.R. and Racine, R.J. (1994). Detection of implied harmony changes in triadic melodies, Music Perception11(3): 243–264.10.2307/40285622
  57. Plaut, D.C. (2000). Methodologies for the computer modeling of human cognitive processes, in F. Boller et al. (Eds), Handbook of Neuropsychology, Elsevier, Amsterdam, pp. 259–267.
  58. Pole, W. (2014). The Philosophy of Music, Routledge, Taylor & Francis, Milton Park, Abingdon.
  59. Povel, D.-J. and Jansen, E. (2002). Harmonic factors in the perception of tonal melodies, Music Perception20(1): 51–85.10.1525/mp.2002.20.1.51
  60. Prince, J.B. (2011). The integration of stimulus dimensions in the perception of music, Quarterly Journal of Experimental Psychology64(11): 2125–2152.10.1080/17470218.2011.57308021598201
  61. Prince, J.B., Schmuckler, M.A. and Thompson, W.F. (2009a). The effect of task and pitch structure on pitch-time interactions in music, Memory and Cognition37(3): 368–381.10.3758/MC.37.3.36819246351
  62. Prince, J.B., Thompson, W.F. and Schmuckler, M.A. (2009b). Pitch and time, tonality and meter: How do musical dimensions combine?, Journal of Experimental Psychology Human Perception & Performance35(5): 1598–1617.10.1037/a001645619803659
  63. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony, Journal of Mathematics and Music5(1): 35–53.10.1080/17459737.2011.573676
  64. Rohrmeier, M. and Pearce, M.T. (2018). Musical syntax I: Theoretical perspectives, in R. Bader (Ed.), Springer Handbook of Systematic Musicology, Springer, Berlin/Heidelberg, pp. 473–486.10.1007/978-3-662-55004-5_25
  65. Schröger, E. and Winkler, I. (1995). Presentation rate and magnitude of stimulus deviance effects on human pre-attentive change detection. viewpoint systems for music prediction, Neuroscience Letters193(3): 185–188.
  66. Shannon, C.E. (1948). A mathematical theory of communication, Bell System Technical Journal27(3): 379–423.10.1002/j.1538-7305.1948.tb01338.x
  67. Sloboda, J.A. and Parker, D.H.H. (1985). Immediate recall of melodies, in P. Howell et al. (Eds), Musical Structure and Cognition, Academic Press, London, pp. 143–167.
  68. Solomon, J.W. (2019). Music Theory Essentials—A Streamlined Approach to Fundamentals, Tonal Harmony, and Post-Tonal Materials, Taylor & Francis, Milton Park, Abingdon.10.4324/9781315167749
  69. Steinbeis, N., Koelsch, S. and Sloboda, J.A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses, Journal of Cognitive Neuroscience18(8): 1380–1393.10.1162/jocn.2006.18.8.138016859422
  70. Steinruecken, C., Ghahramani, Z. and MacKay, D. (2015). Improving ppm with dynamic parameter updates, Data Compression Conference 2015, Snowbrid, UT, USA, pp. 193–202.
  71. Thompson, W.F. and Cuddy, L.L. (1989). Sensitivity to key change in chorale sequences: A comparison of single voices and four-voice harmony, Music Perception7(2): 151–168.10.2307/40285455
  72. Tillmann, B., Bharucha, J.J. and Bigand, E. (2000). Implicit learning of tonality: A self-organizing approach, Psychological Review107(4): 885–913.10.1037/0033-295X.107.4.885
  73. Volk, A. (2016). Computational music structure analysis: A computational enterprise into time in music, in M. Müller et al. (Eds), Computational Music Structure Analysis, Vol. 6, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Leibniz, p. 159.
  74. Wiggins, G.A., Pearce, M.T. and Müllensiefen, D. (2009). Computational modeling of music cognition and musical creativity, in R.T. Dean (Ed.), Oxford Handbook of Computer Music and Digital Sound Culture, Oxford University Press, Oxford.
  75. Williams, L.R. (2005). Effect of music training and musical complexity on focus of attention to melody or harmony, Journal of Research in Music Education53(3): 210–221.10.1177/002242940505300303
DOI: https://doi.org/10.34768/amcs-2020-0056 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 761 - 772
Submitted on: Jan 7, 2020
|
Accepted on: Jun 20, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Lorena Mihelač, Janez Povh, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.