Have a personal or library account? Click to login
Basic quantum circuits for classification and approximation tasks Cover
Open Access
|Dec 2020

References

  1. Augusto, L.M. (2017). Many-Valued Logics: A Mathematical and Computational Introduction, College Publications, London.
  2. Bertlmann, R. and Krammer, P. (2008). Bloch vectors for qudits, Journal of Physics A: Mathematical and Theoretical41(23): 235303, DOI: 10.1088/1751-8113/41/23/235303.10.1088/1751-8113/41/23/235303
  3. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and Lloyd, S. (2017). Quantum machine learning, Nature549(7671): 195–202, DOI: 10.1038/nature23474.10.1038/nature23474
  4. Gibney, E. (2019). Hello quantum world! Google publishes landmark quantum supremacy claim, Nature574(7779): 461–462, DOI: 10.1038/d41586-019-03213-z.10.1038/d41586-019-03213-z
  5. IBM (2019). Q Experience, https://quantum-computing.ibm.com/.
  6. Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2019). The phase-space approach to time evolution of quantum states in confined systems: The spectral split-operator method, International Journal of Applied Mathematics and Computer Science29(3): 439–451, DOI: 10.2478/amcs-2019-0032.10.2478/amcs-2019-0032
  7. Li, J., Yang, X., Peng, X. and Sun, C. (2017). Hybrid quantum-classical approach to quantum optimal control, Physical Review Letters118(15): 150503, DOI: 10.1103/PhysRevLett.118.150503.10.1103/PhysRevLett.118.150503
  8. Li, Z. and Li, P. (2015). Clustering algorithm of quantum self-organization network, Open Journal of Applied Sciences05(6): 270–278, DOI: 10.4236/ojapps.2015.56028.10.4236/ojapps.2015.56028
  9. MacMahon, D. (2007). Quantum Computing Explained, John Wiley, Hoboken, NJ.10.1002/9780470181386
  10. Mitarai, K., Negoro, M., Kitagawa, M. and Fujii, K. (2018). Quantum circuit learning, Physical Review Letters98(3): 032309, DOI: 10.1103/PhysRevA.98.032309.10.1103/PhysRevA.98.032309
  11. Narayanan, A. and Menneer, T. (2000). Quantum artificial neural network architectures and components, Information Sciences128(3–4): 231–255, DOI: 10.1016/S0020-0255(00)00055-4.10.1016/S0020-0255(00)00055-4
  12. Nielsen, M. and Chuang, I. (2010). Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, Cambridge.10.1017/CBO9780511976667
  13. Ortigoso, J. (2018). Twelve years before the quantum no-cloning theorem, American Journal of Physics86(3): 201–205, DOI: 10.1119/1.5021356.10.1119/1.5021356
  14. Park, J. (1970). The concept of transition in quantum mechanics, Foundations of Physics1(1): 23–33, DOI: 10.1007/BF00708652.10.1007/BF00708652
  15. Pati, A.K. and Braunstein, S.L. (2000). Impossibility of deleting an unknown quantum state, Nature404(6774): 164–165, DOI: 10.1038/35004532.10.1038/3500453210724163
  16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research12: 2825–2830, DOI: 10.5555/1953048.2078195.
  17. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. and Latorre, J. (2020). Data re-uploading for a universal quantum classifier, Quantum4: 226, DOI: 10.22331/q-2020-02-06-226.10.22331/q-2020-02-06-226
  18. Rigetti (2019). Quantum Computing Systems, https://www.rigetti.com/systems.
  19. Schuld, M., Sinayskiy, I. and Petruccione, F. (2014). Quantum computing for pattern classification, in D.-N. Pham and S.-B. Park (Eds), PRICAI 2014: Trends in Artificial Intelligence, Springer, Cham, pp. 208–220, DOI: 10.1007/978-3-319-13560-1_17.10.1007/978-3-319-13560-1_17
  20. Schuld, M., Sinayskiy, I. and Petruccione, F. (2015). An introduction to quantum machine learning, Contemporary Physics56(2): 172–185, DOI: 10.1080/00107514.2014.964942.10.1080/00107514.2014.964942
  21. Veenman, C. and Reinders, M. (2005). The nearest sub-class classifier: a compromise between the nearest mean and nearest neighbor classifier, IEEE Transactions on Pattern Analysis and Machine Intelligence27(9): 1417–1429, DOI: 10.1109/TPAMI.2005.187.10.1109/TPAMI.2005.18716173185
  22. Weigang, L. (1998). A study of parallel self-organizing map, arXiv: quant-ph/9808025v3.
  23. Wiebe, N., Kapoor, A. and Svore, M. (2015). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, Quantum Information and Computation15(3–4): 316–356.10.26421/QIC15.3-4-7
  24. Wiśniewska, J. and Sawerwain, M. (2020). Simple quantum circuits for data classification, in N.T. Nguyen et al. (Eds), Intelligent Information and Database Systems, Springer, Cham, pp. 392–403, DOI: 0.1007/978-3-030-41964-6_34.
  25. Wootters, W. and Zurek, W. (1982). A single quantum cannot be cloned, Nature299(5886): 802–803, DOI: 10.1038/299802a0.10.1038/299802a0
  26. Zoufal, C., Lucchi, A. and Woerner, S. (2019). Quantum generative adversarial networks for learning and loading random distributions, Quantum Information5(1): 103, DOI: 10.1038/s41534-019-0223-2.10.1038/s41534-019-0223-2
DOI: https://doi.org/10.34768/amcs-2020-0054 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 733 - 744
Submitted on: Jan 23, 2020
Accepted on: Oct 29, 2020
Published on: Dec 31, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Joanna Wiśniewska, Marek Sawerwain, Andrzej Obuchowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.