Have a personal or library account? Click to login
ASA-graphs for efficient data representation and processing Cover
Open Access
|Dec 2020

References

  1. Adel’son-Vel’skii, G.M. and Landis, E.M. (1962). An algorithm for organization of information, Doklady Akademii Nauk146(2): 263–266.
  2. Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician46(3): 175–185.10.1080/00031305.1992.10475879
  3. Baran, M. (2018). Closest paths in graph drawings under an elastic metric, International Journal of Applied Mathematics and Computer Science28(2): 387–397, DOI: 10.2478/amcs-2018-0029.10.2478/amcs-2018-0029
  4. Bayer, R. and McCreight, E. (1972). Organization and maintenance of large ordered indices, Acta Informatica1(3): 173–1.10.1007/BF00288683
  5. Chen, L. and Schott, R. (1996). Optimal operations on red-black trees, International Journal of Foundations of Computer Science7(03): 227–239.10.1142/S0129054196000178
  6. Comer, D. (1979). Ubiquitous B-tree, ACM Computing Surveys11(2): 121–137.10.1145/356770.356776
  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009). Introduction to Algorithms, MIT Press, Cambridge, MA.
  8. Dan, L. (2007). Indexing and Querying Moving Objects Databases, PhD thesis, National University of Singapore, Singapore.
  9. Demaine, E.D., Harmon, D., Iacono, J. and Pǎtraşcu, M. (2007). Dynamic optimality—almost, SIAM Journal on Computing37(1): 240–251.10.1137/S0097539705447347
  10. Fan, K., Wang, X., Suto, K., Li, H. and Yang, Y. (2018). Secure and efficient privacy-preserving ciphertext retrieval in connected vehicular cloud computing, IEEE Network32(3): 52–57.10.1109/MNET.2018.1700327
  11. Fenk, R. (2002). The BUB-tree, Proceedings of the 28th VLDB International Conference on Very Large Data Bases (VLDB’02), Hongkong, China, https://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/papers/S34P16.pdf.
  12. Graefe, G. (2011). Modern B-tree techniques, Foundations and Trends ® in Databases3(4): 203–402.10.1561/1900000028
  13. Guibas, L.J. and Sedgewick, R. (1978). A dichromatic framework for balanced trees, 19th Annual Symposium on Foundations of Computer Science (SFCS 1978), Ann Arbor, MI, USA, pp. 8–21.
  14. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching, Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, Boston, MA, USA, pp. 47–57.
  15. Haeupler, B., Sen, S. and Tarjan, R.E. (2015). Rank-balanced trees, ACM Transactions on Algorithms11(4): 1–26.10.1145/2689412
  16. Hibbard, T.N. (1962). Some combinatorial properties of certain trees with applications to searching and sorting, Journal of the ACM9(1): 13–28.10.1145/321105.321108
  17. Horzyk, A. (2013). Artificial Associative Systems and Associative Artificial Intelligence, Academic Publishing House EXIT, Warsaw, (in Polish).10.1007/978-3-642-29347-4_10
  18. Horzyk, A. (2015). Innovative types and abilities of neural networks based on associative mechanisms and a new associative model of neurons, Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, pp. 26–38.
  19. Horzyk, A. (2017). Deep associative semantic neural graphs for knowledge representation and fast data exploration, Proceedings of the 9th International Conference on Knowledge Engineering and Ontology Development, Santa Cruz/Funchal, Madeira, Portugal, pp. 67–79.
  20. Horzyk, A. (2018). Associative graph data structures with an efficient access via AVB+trees, Proceedings of the 11th International Conference on Human System Interaction, Gdańsk, Poland, pp. 169–175.
  21. Horzyk, A. and Starzyk, J.A. (2018). Multi-class and multi-label classification using associative pulsing neural networks, 2018 IEEE World Congress on Computational Intelligence (WCCI 2018)/2018 International Joint Conference on Neural Networks (IJCNN 2018), Rio de Janeiro, Brazil, pp. 427–434.
  22. Horzyk, A. and Starzyk, J.A. (2019). Associative data model in search for nearest neighbors and similar patterns, Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence, Xiamen, China, pp. 932–939.
  23. Horzyk, A., Starzyk, J.A. and Graham, J. (2017). Integration of semantic and episodic memories, Transactions on Neural Networks and Learning Systems28(12): 3084–3095.10.1109/TNNLS.2017.2728203
  24. Jensen, C.S., Lin, D. and Ooi, B.C. (2004). Query and update efficient B+-tree based indexing of moving objects, Proceedings of the 30th International Conference on Very Large Data Bases, Toronto, Canada, Vol. 30, pp. 768–779.
  25. Kim, W.-H., Seo, J., Kim, J. and Nam, B. (2018). clfB-tree: Cacheline friendly persistent B-tree for NVRAM, ACM Transactions on Storage14(1): 1–17.10.1145/3129263
  26. Knuth, D.E. (1998). Sorting and Searching. The Art of Computer Programming, Addison-Wesley, Boston, MA.
  27. Lewicki, A. and Pancerz, K. (2020). Ant-based clustering for flow graph mining, International Journal of Applied Mathematics and Computer Science30(3): 561–572, DOI: 10.34768/amcs-2020-0041.
  28. Mehta, D. and Sahni, S. (2004). Handbook of Datastructures and Applications, CRS Press Tylor & Francis Group, Boca Raton, FL.
  29. Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D. and Elovici, Y. (2018). N-BAIOT—network-based detection of IOT botnet attacks using deep autoencoders, IEEE Pervasive Computing17(3): 12–22.10.1109/MPRV.2018.03367731
  30. Pfaff, B. (2004). Performance analysis of BSTs in system software, ACM SIGMETRICS Performance Evaluation Review32(1): 410–411.10.1145/1012888.1005742
  31. Sagiv, Y. (1986). Concurrent operations on B*-trees with overtaking, Journal of Computer and System Sciences33(2): 275–296.10.1016/0022-0000(86)90021-8
  32. Sedgewick, R. and Wayne, K. (2011). Algorithms, Addison-Wesley, Upper Saddle River, NJ.
  33. Sharma, V., Kumar, R. and Kumar, N. (2018). DPTR: Distributed priority tree-based routing protocol for FANETs, Computer Communications122: 129–151.10.1016/j.comcom.2018.03.002
  34. Shen, M., Jiang, X. and Sun, T. (2018). Anomaly detection based on nearest neighbor search with locality-sensitive B-tree, Neurocomputing289: 55–67.10.1016/j.neucom.2018.02.012
  35. Sun, P., Wen, Y., Ta, D.N.B. and Xie, H. (2016). Metaflow: A scalable metadata lookup service for distributed file systems in data centers, IEEE Transactions on Big Data4(2): 203–216.10.1109/TBDATA.2016.2612241
  36. Toptsis, A.A. (1993). B**-tree: A data organization method for high storage utilization, Proceedings of ICCI’93: 5th International Conference on Computing and Information, Sudbury, ON, Canada, pp. 277–281.
  37. Wieczorek, M., Siłka, J., and Woźniak, M. (2020). Neural network powered COVID-19 spread forecasting model, Chaos, Solitons & Fractals140, Article no. 110203.
  38. Woźniak, M., Wieczorek, M., Siłka, J. and Połap, D. (2020). Body pose prediction based on motion sensor data and recurrent neural network, IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2020.3015934.10.1109/TII.2020.3015934
  39. Wu, S., Jiang, D., Ooi, B.C. and Wu, K.-L. (2010). Efficient B-tree based indexing for cloud data processing, Proceedings of the VLDB Endowment3(1–2): 1207–1218.10.14778/1920841.1920991
DOI: https://doi.org/10.34768/amcs-2020-0053 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 717 - 731
Submitted on: Aug 3, 2020
|
Accepted on: Nov 20, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Adrian Horzyk, Daniel Bulanda, Janusz A. Starzyk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.